An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network

Detalhes bibliográficos
Autor(a) principal: Ribeiro, Selma Regina Aranha
Data de Publicação: 2008
Outros Autores: Centeno, Antonio Silva, Krueger, Cláudia Pereira
Tipo de documento: Artigo
Idioma: por
Título da fonte: Boletim de Ciências Geodésicas
Texto Completo: https://revistas.ufpr.br/bcg/article/view/11814
Resumo: In this article, we describe a methodology for the estimate of bathimetry usingsatellite imagery (IKONOS II) based on the neural network approach. The inputvariables of the model are the digital values of two spectral bands and the positionof the pixel, given by its N, E coordinates. The proposed model consists of anartificial feed forward neural network with two hidden layers. The study reveals thatthe proposed methodology is able to produce results that reach technicalspecifications of Diretoria de Hidrologia e Navegação (DHN), in charge of for thebathimetric surveys in Brazil, for class 1 surveys, as the maximum error lies bellow0,5m. However, it was also verified that the methodology is effcient only forrestricted depths, from 0,80 to 3,00 meters, where the spectral response of the watercolumn prevails on the spectral response of the bottom and it is not stronglyaffected by absorption.
id UFPR-2_60d5d0673ac189f67d1a695d322e12d0
oai_identifier_str oai:revistas.ufpr.br:article/11814
network_acronym_str UFPR-2
network_name_str Boletim de Ciências Geodésicas
repository_id_str
spelling An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural networkESTIMATIVA DE PROFUNDIDADE A PARTIR DE LEVANTAMENTO BATIMÉTRICO E DADOS IKONOS II MEDIANTE REDES NEURAIS ARTIFICIAISBathimetric survey; Artificial Neural Network; Bathimetry; Levantamentos Batimétricos; Redes Neurais Artificiais; BatimetriaIn this article, we describe a methodology for the estimate of bathimetry usingsatellite imagery (IKONOS II) based on the neural network approach. The inputvariables of the model are the digital values of two spectral bands and the positionof the pixel, given by its N, E coordinates. The proposed model consists of anartificial feed forward neural network with two hidden layers. The study reveals thatthe proposed methodology is able to produce results that reach technicalspecifications of Diretoria de Hidrologia e Navegação (DHN), in charge of for thebathimetric surveys in Brazil, for class 1 surveys, as the maximum error lies bellow0,5m. However, it was also verified that the methodology is effcient only forrestricted depths, from 0,80 to 3,00 meters, where the spectral response of the watercolumn prevails on the spectral response of the bottom and it is not stronglyaffected by absorption.O presente trabalho propõe uma metodologia para estimar profundidadesbatimétricas a partir de imagens IKONOS II baseada no uso de redes neuraisartificiais (RNA). Como variáveis de entrada foram adotados os valores digitais deduas bandas espectrais do sistema IKONOS II e a posição do pixel, dada pelascoordenadas (N, E). O modelo proposto consiste em uma RNA de duas camadasescondidas, do tipo feed forward. O estudo comprova que esta metodologia geraresultados que atendem as especificações técnicas da Diretoria de Hidrografia eNavegação (DHN), responsável pelas publicações náuticas no Brasil, paralevantamentos batimétricos de Ordem 1, sendo o erro máximo permitido, para estaOrdem , entre 0,25m a 0,50m. No entanto, verificou-se que esta metodologiaatende uma faixa restrita de profundidade, entre 0,80m a 3,00m, na qual a resposta espectral da coluna de água prevalece sobre o reflexo do fundo e não é fortementeafetada pela absorção.Boletim de Ciências GeodésicasBulletin of Geodetic Sciences2008-07-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufpr.br/bcg/article/view/11814Boletim de Ciências Geodésicas; Vol 14, No 2 (2008)Bulletin of Geodetic Sciences; Vol 14, No 2 (2008)1982-21701413-4853reponame:Boletim de Ciências Geodésicasinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRporhttps://revistas.ufpr.br/bcg/article/view/11814/8325Ribeiro, Selma Regina AranhaCenteno, Antonio SilvaKrueger, Cláudia Pereirainfo:eu-repo/semantics/openAccess2008-10-08T14:15:30Zoai:revistas.ufpr.br:article/11814Revistahttps://revistas.ufpr.br/bcgPUBhttps://revistas.ufpr.br/bcg/oaiqdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br1982-21701413-4853opendoar:2008-10-08T14:15:30Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)false
dc.title.none.fl_str_mv An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network
ESTIMATIVA DE PROFUNDIDADE A PARTIR DE LEVANTAMENTO BATIMÉTRICO E DADOS IKONOS II MEDIANTE REDES NEURAIS ARTIFICIAIS
title An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network
spellingShingle An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network
Ribeiro, Selma Regina Aranha
Bathimetric survey; Artificial Neural Network; Bathimetry; Levantamentos Batimétricos; Redes Neurais Artificiais; Batimetria
title_short An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network
title_full An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network
title_fullStr An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network
title_full_unstemmed An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network
title_sort An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network
author Ribeiro, Selma Regina Aranha
author_facet Ribeiro, Selma Regina Aranha
Centeno, Antonio Silva
Krueger, Cláudia Pereira
author_role author
author2 Centeno, Antonio Silva
Krueger, Cláudia Pereira
author2_role author
author
dc.contributor.author.fl_str_mv Ribeiro, Selma Regina Aranha
Centeno, Antonio Silva
Krueger, Cláudia Pereira
dc.subject.por.fl_str_mv Bathimetric survey; Artificial Neural Network; Bathimetry; Levantamentos Batimétricos; Redes Neurais Artificiais; Batimetria
topic Bathimetric survey; Artificial Neural Network; Bathimetry; Levantamentos Batimétricos; Redes Neurais Artificiais; Batimetria
description In this article, we describe a methodology for the estimate of bathimetry usingsatellite imagery (IKONOS II) based on the neural network approach. The inputvariables of the model are the digital values of two spectral bands and the positionof the pixel, given by its N, E coordinates. The proposed model consists of anartificial feed forward neural network with two hidden layers. The study reveals thatthe proposed methodology is able to produce results that reach technicalspecifications of Diretoria de Hidrologia e Navegação (DHN), in charge of for thebathimetric surveys in Brazil, for class 1 surveys, as the maximum error lies bellow0,5m. However, it was also verified that the methodology is effcient only forrestricted depths, from 0,80 to 3,00 meters, where the spectral response of the watercolumn prevails on the spectral response of the bottom and it is not stronglyaffected by absorption.
publishDate 2008
dc.date.none.fl_str_mv 2008-07-18
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufpr.br/bcg/article/view/11814
url https://revistas.ufpr.br/bcg/article/view/11814
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistas.ufpr.br/bcg/article/view/11814/8325
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Boletim de Ciências Geodésicas
Bulletin of Geodetic Sciences
publisher.none.fl_str_mv Boletim de Ciências Geodésicas
Bulletin of Geodetic Sciences
dc.source.none.fl_str_mv Boletim de Ciências Geodésicas; Vol 14, No 2 (2008)
Bulletin of Geodetic Sciences; Vol 14, No 2 (2008)
1982-2170
1413-4853
reponame:Boletim de Ciências Geodésicas
instname:Universidade Federal do Paraná (UFPR)
instacron:UFPR
instname_str Universidade Federal do Paraná (UFPR)
instacron_str UFPR
institution UFPR
reponame_str Boletim de Ciências Geodésicas
collection Boletim de Ciências Geodésicas
repository.name.fl_str_mv Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)
repository.mail.fl_str_mv qdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br
_version_ 1799771722338009088