An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Boletim de Ciências Geodésicas |
Texto Completo: | https://revistas.ufpr.br/bcg/article/view/11814 |
Resumo: | In this article, we describe a methodology for the estimate of bathimetry usingsatellite imagery (IKONOS II) based on the neural network approach. The inputvariables of the model are the digital values of two spectral bands and the positionof the pixel, given by its N, E coordinates. The proposed model consists of anartificial feed forward neural network with two hidden layers. The study reveals thatthe proposed methodology is able to produce results that reach technicalspecifications of Diretoria de Hidrologia e Navegação (DHN), in charge of for thebathimetric surveys in Brazil, for class 1 surveys, as the maximum error lies bellow0,5m. However, it was also verified that the methodology is effcient only forrestricted depths, from 0,80 to 3,00 meters, where the spectral response of the watercolumn prevails on the spectral response of the bottom and it is not stronglyaffected by absorption. |
id |
UFPR-2_60d5d0673ac189f67d1a695d322e12d0 |
---|---|
oai_identifier_str |
oai:revistas.ufpr.br:article/11814 |
network_acronym_str |
UFPR-2 |
network_name_str |
Boletim de Ciências Geodésicas |
repository_id_str |
|
spelling |
An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural networkESTIMATIVA DE PROFUNDIDADE A PARTIR DE LEVANTAMENTO BATIMÉTRICO E DADOS IKONOS II MEDIANTE REDES NEURAIS ARTIFICIAISBathimetric survey; Artificial Neural Network; Bathimetry; Levantamentos Batimétricos; Redes Neurais Artificiais; BatimetriaIn this article, we describe a methodology for the estimate of bathimetry usingsatellite imagery (IKONOS II) based on the neural network approach. The inputvariables of the model are the digital values of two spectral bands and the positionof the pixel, given by its N, E coordinates. The proposed model consists of anartificial feed forward neural network with two hidden layers. The study reveals thatthe proposed methodology is able to produce results that reach technicalspecifications of Diretoria de Hidrologia e Navegação (DHN), in charge of for thebathimetric surveys in Brazil, for class 1 surveys, as the maximum error lies bellow0,5m. However, it was also verified that the methodology is effcient only forrestricted depths, from 0,80 to 3,00 meters, where the spectral response of the watercolumn prevails on the spectral response of the bottom and it is not stronglyaffected by absorption.O presente trabalho propõe uma metodologia para estimar profundidadesbatimétricas a partir de imagens IKONOS II baseada no uso de redes neuraisartificiais (RNA). Como variáveis de entrada foram adotados os valores digitais deduas bandas espectrais do sistema IKONOS II e a posição do pixel, dada pelascoordenadas (N, E). O modelo proposto consiste em uma RNA de duas camadasescondidas, do tipo feed forward. O estudo comprova que esta metodologia geraresultados que atendem as especificações técnicas da Diretoria de Hidrografia eNavegação (DHN), responsável pelas publicações náuticas no Brasil, paralevantamentos batimétricos de Ordem 1, sendo o erro máximo permitido, para estaOrdem , entre 0,25m a 0,50m. No entanto, verificou-se que esta metodologiaatende uma faixa restrita de profundidade, entre 0,80m a 3,00m, na qual a resposta espectral da coluna de água prevalece sobre o reflexo do fundo e não é fortementeafetada pela absorção.Boletim de Ciências GeodésicasBulletin of Geodetic Sciences2008-07-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufpr.br/bcg/article/view/11814Boletim de Ciências Geodésicas; Vol 14, No 2 (2008)Bulletin of Geodetic Sciences; Vol 14, No 2 (2008)1982-21701413-4853reponame:Boletim de Ciências Geodésicasinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRporhttps://revistas.ufpr.br/bcg/article/view/11814/8325Ribeiro, Selma Regina AranhaCenteno, Antonio SilvaKrueger, Cláudia Pereirainfo:eu-repo/semantics/openAccess2008-10-08T14:15:30Zoai:revistas.ufpr.br:article/11814Revistahttps://revistas.ufpr.br/bcgPUBhttps://revistas.ufpr.br/bcg/oaiqdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br1982-21701413-4853opendoar:2008-10-08T14:15:30Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)false |
dc.title.none.fl_str_mv |
An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network ESTIMATIVA DE PROFUNDIDADE A PARTIR DE LEVANTAMENTO BATIMÉTRICO E DADOS IKONOS II MEDIANTE REDES NEURAIS ARTIFICIAIS |
title |
An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network |
spellingShingle |
An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network Ribeiro, Selma Regina Aranha Bathimetric survey; Artificial Neural Network; Bathimetry; Levantamentos Batimétricos; Redes Neurais Artificiais; Batimetria |
title_short |
An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network |
title_full |
An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network |
title_fullStr |
An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network |
title_full_unstemmed |
An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network |
title_sort |
An estimate of depth from a bathimetric survey and IKONOS II data by means of artifitial neural network |
author |
Ribeiro, Selma Regina Aranha |
author_facet |
Ribeiro, Selma Regina Aranha Centeno, Antonio Silva Krueger, Cláudia Pereira |
author_role |
author |
author2 |
Centeno, Antonio Silva Krueger, Cláudia Pereira |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Ribeiro, Selma Regina Aranha Centeno, Antonio Silva Krueger, Cláudia Pereira |
dc.subject.por.fl_str_mv |
Bathimetric survey; Artificial Neural Network; Bathimetry; Levantamentos Batimétricos; Redes Neurais Artificiais; Batimetria |
topic |
Bathimetric survey; Artificial Neural Network; Bathimetry; Levantamentos Batimétricos; Redes Neurais Artificiais; Batimetria |
description |
In this article, we describe a methodology for the estimate of bathimetry usingsatellite imagery (IKONOS II) based on the neural network approach. The inputvariables of the model are the digital values of two spectral bands and the positionof the pixel, given by its N, E coordinates. The proposed model consists of anartificial feed forward neural network with two hidden layers. The study reveals thatthe proposed methodology is able to produce results that reach technicalspecifications of Diretoria de Hidrologia e Navegação (DHN), in charge of for thebathimetric surveys in Brazil, for class 1 surveys, as the maximum error lies bellow0,5m. However, it was also verified that the methodology is effcient only forrestricted depths, from 0,80 to 3,00 meters, where the spectral response of the watercolumn prevails on the spectral response of the bottom and it is not stronglyaffected by absorption. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-07-18 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufpr.br/bcg/article/view/11814 |
url |
https://revistas.ufpr.br/bcg/article/view/11814 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.ufpr.br/bcg/article/view/11814/8325 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Boletim de Ciências Geodésicas Bulletin of Geodetic Sciences |
publisher.none.fl_str_mv |
Boletim de Ciências Geodésicas Bulletin of Geodetic Sciences |
dc.source.none.fl_str_mv |
Boletim de Ciências Geodésicas; Vol 14, No 2 (2008) Bulletin of Geodetic Sciences; Vol 14, No 2 (2008) 1982-2170 1413-4853 reponame:Boletim de Ciências Geodésicas instname:Universidade Federal do Paraná (UFPR) instacron:UFPR |
instname_str |
Universidade Federal do Paraná (UFPR) |
instacron_str |
UFPR |
institution |
UFPR |
reponame_str |
Boletim de Ciências Geodésicas |
collection |
Boletim de Ciências Geodésicas |
repository.name.fl_str_mv |
Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR) |
repository.mail.fl_str_mv |
qdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br |
_version_ |
1799771722338009088 |