DETECTION OF INCONSISTENCIES IN GEOSPATIAL DATA WITH GEOSTATISTICS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Boletim de Ciências Geodésicas |
Texto Completo: | https://revistas.ufpr.br/bcg/article/view/52783 |
Resumo: | Almost every researcher has come through observations that “drift” from the rest of the sample, suggesting some inconsistency. The aim of this paper is to propose a new inconsistent data detection method for continuous geospatial data based in Geostatistics, independently from the generative cause (measuring and execution errors and inherent variability data). The choice of Geostatistics is based in its ideal characteristics, as avoiding systematic errors, for example. The importance of a new inconsistent detection method proposal is in the fact that some existing methods used in geospatial data consider theoretical assumptions hardly attended. Equally, the choice of the data set is related to the importance of the LiDAR technology (Light Detection and Ranging) in the production of Digital Elevation Models (DEM). Thus, with the new methodology it was possible to detect and map discrepant data. Comparing it to a much utilized detections method, BoxPlot, the importance and functionality of the new method was verified, since the BoxPlot did not detect any data classified as discrepant. The proposed method pointed that, in average, 1,2% of the data of possible regionalized inferior outliers and, in average, 1,4% of possible regionalized superior outliers, in relation to the set of data used in the study. |
id |
UFPR-2_63665064873494608c533178be6cb152 |
---|---|
oai_identifier_str |
oai:revistas.ufpr.br:article/52783 |
network_acronym_str |
UFPR-2 |
network_name_str |
Boletim de Ciências Geodésicas |
repository_id_str |
|
spelling |
DETECTION OF INCONSISTENCIES IN GEOSPATIAL DATA WITH GEOSTATISTICSGeociências; GeodésiaOutliers, geoprocessing, LiDAR technologyAlmost every researcher has come through observations that “drift” from the rest of the sample, suggesting some inconsistency. The aim of this paper is to propose a new inconsistent data detection method for continuous geospatial data based in Geostatistics, independently from the generative cause (measuring and execution errors and inherent variability data). The choice of Geostatistics is based in its ideal characteristics, as avoiding systematic errors, for example. The importance of a new inconsistent detection method proposal is in the fact that some existing methods used in geospatial data consider theoretical assumptions hardly attended. Equally, the choice of the data set is related to the importance of the LiDAR technology (Light Detection and Ranging) in the production of Digital Elevation Models (DEM). Thus, with the new methodology it was possible to detect and map discrepant data. Comparing it to a much utilized detections method, BoxPlot, the importance and functionality of the new method was verified, since the BoxPlot did not detect any data classified as discrepant. The proposed method pointed that, in average, 1,2% of the data of possible regionalized inferior outliers and, in average, 1,4% of possible regionalized superior outliers, in relation to the set of data used in the study.Boletim de Ciências GeodésicasBulletin of Geodetic SciencesSantos, Adriana Maria Rocha TrancosoSantos, Gerson Rodrigues dosEmiliano, Paulo CésarMedeiros, Nilcilene das GraçasKaleita, Amy L.Pruski, Lígia de Oliveira Serrano2017-07-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufpr.br/bcg/article/view/52783Boletim de Ciências Geodésicas; Vol 23, No 2 (2017)Bulletin of Geodetic Sciences; Vol 23, No 2 (2017)1982-21701413-4853reponame:Boletim de Ciências Geodésicasinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRporhttps://revistas.ufpr.br/bcg/article/view/52783/32443Copyright (c) 2017 Adriana Maria Rocha Trancoso Santos, Gerson Rodrigues dos Santos, Paulo César Emiliano, Nilcilene das Graças Medeiros, Amy L. Kaleita, Lígia de Oliveira Serrano Pruskihttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccess2017-07-31T16:00:12Zoai:revistas.ufpr.br:article/52783Revistahttps://revistas.ufpr.br/bcgPUBhttps://revistas.ufpr.br/bcg/oaiqdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br1982-21701413-4853opendoar:2017-07-31T16:00:12Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)false |
dc.title.none.fl_str_mv |
DETECTION OF INCONSISTENCIES IN GEOSPATIAL DATA WITH GEOSTATISTICS |
title |
DETECTION OF INCONSISTENCIES IN GEOSPATIAL DATA WITH GEOSTATISTICS |
spellingShingle |
DETECTION OF INCONSISTENCIES IN GEOSPATIAL DATA WITH GEOSTATISTICS Santos, Adriana Maria Rocha Trancoso Geociências; Geodésia Outliers, geoprocessing, LiDAR technology |
title_short |
DETECTION OF INCONSISTENCIES IN GEOSPATIAL DATA WITH GEOSTATISTICS |
title_full |
DETECTION OF INCONSISTENCIES IN GEOSPATIAL DATA WITH GEOSTATISTICS |
title_fullStr |
DETECTION OF INCONSISTENCIES IN GEOSPATIAL DATA WITH GEOSTATISTICS |
title_full_unstemmed |
DETECTION OF INCONSISTENCIES IN GEOSPATIAL DATA WITH GEOSTATISTICS |
title_sort |
DETECTION OF INCONSISTENCIES IN GEOSPATIAL DATA WITH GEOSTATISTICS |
author |
Santos, Adriana Maria Rocha Trancoso |
author_facet |
Santos, Adriana Maria Rocha Trancoso Santos, Gerson Rodrigues dos Emiliano, Paulo César Medeiros, Nilcilene das Graças Kaleita, Amy L. Pruski, Lígia de Oliveira Serrano |
author_role |
author |
author2 |
Santos, Gerson Rodrigues dos Emiliano, Paulo César Medeiros, Nilcilene das Graças Kaleita, Amy L. Pruski, Lígia de Oliveira Serrano |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Santos, Adriana Maria Rocha Trancoso Santos, Gerson Rodrigues dos Emiliano, Paulo César Medeiros, Nilcilene das Graças Kaleita, Amy L. Pruski, Lígia de Oliveira Serrano |
dc.subject.por.fl_str_mv |
Geociências; Geodésia Outliers, geoprocessing, LiDAR technology |
topic |
Geociências; Geodésia Outliers, geoprocessing, LiDAR technology |
description |
Almost every researcher has come through observations that “drift” from the rest of the sample, suggesting some inconsistency. The aim of this paper is to propose a new inconsistent data detection method for continuous geospatial data based in Geostatistics, independently from the generative cause (measuring and execution errors and inherent variability data). The choice of Geostatistics is based in its ideal characteristics, as avoiding systematic errors, for example. The importance of a new inconsistent detection method proposal is in the fact that some existing methods used in geospatial data consider theoretical assumptions hardly attended. Equally, the choice of the data set is related to the importance of the LiDAR technology (Light Detection and Ranging) in the production of Digital Elevation Models (DEM). Thus, with the new methodology it was possible to detect and map discrepant data. Comparing it to a much utilized detections method, BoxPlot, the importance and functionality of the new method was verified, since the BoxPlot did not detect any data classified as discrepant. The proposed method pointed that, in average, 1,2% of the data of possible regionalized inferior outliers and, in average, 1,4% of possible regionalized superior outliers, in relation to the set of data used in the study. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07-31 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufpr.br/bcg/article/view/52783 |
url |
https://revistas.ufpr.br/bcg/article/view/52783 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.ufpr.br/bcg/article/view/52783/32443 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Boletim de Ciências Geodésicas Bulletin of Geodetic Sciences |
publisher.none.fl_str_mv |
Boletim de Ciências Geodésicas Bulletin of Geodetic Sciences |
dc.source.none.fl_str_mv |
Boletim de Ciências Geodésicas; Vol 23, No 2 (2017) Bulletin of Geodetic Sciences; Vol 23, No 2 (2017) 1982-2170 1413-4853 reponame:Boletim de Ciências Geodésicas instname:Universidade Federal do Paraná (UFPR) instacron:UFPR |
instname_str |
Universidade Federal do Paraná (UFPR) |
instacron_str |
UFPR |
institution |
UFPR |
reponame_str |
Boletim de Ciências Geodésicas |
collection |
Boletim de Ciências Geodésicas |
repository.name.fl_str_mv |
Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR) |
repository.mail.fl_str_mv |
qdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br |
_version_ |
1799771719418773504 |