AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Boletim de Ciências Geodésicas |
Texto Completo: | https://revistas.ufpr.br/bcg/article/view/52781 |
Resumo: | Técnicas de Sensoriamento Remoto tem ganhado especial interesse, uma vez que podem ser utilizadas para o monitoramento de sistemas e fenômenos em escala local ou global, de maneira contínua temporal e espacialmente. Redes Neurais Artificias estão entre os métodos que são capazes de trabalhar com grande quantidade de dados, com diversas características e sofrer pouca influência de ruídos. Desta forma, fez-se o uso de Redes Neurais Artificiais com o propósito de classificar dados de sensoriamento remoto. Utilizou-se de dados de alta resolução espacial, como imagens espectrais de aerolevantamento e dados altimétricos Laser Scanner, para a classificação do alvo “árvores”. Com isso, gerou-se RNA especialistas na detecção destes alvos. Os dados utilizados são de uma área densamente urbanizada, onde existe grande variabilidade de cotas e características espectrais. Os resultados mostraram que a classificação utilizando dados espectrais e altimétricos resultaram em melhores classificações, do que a utilização apenas de informações espectrais. Testou-se também a influência do tamanho das amostras de treinamento das Redes Neurais Artificiais, gerando assim uma “curva de aprendizado” das RNA. Percebeu-se que conforme se aumenta o tamanho das amostras de treinamento, existe uma tendência em aumentar a acurácia na classificação dos dados. Os acertos globais foram superiores a 87,5% quando utilizando apenas informação espectral e 97,5% quando utilizando dados espectrais e altimétricos. |
id |
UFPR-2_b1a06da95a42ec1cc08cdce9061f7c2b |
---|---|
oai_identifier_str |
oai:revistas.ufpr.br:article/52781 |
network_acronym_str |
UFPR-2 |
network_name_str |
Boletim de Ciências Geodésicas |
repository_id_str |
|
spelling |
AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNERGeociências; GeodésiaSensoriamento Remoto, Classificação Digital de Imagens, Redes Neurais Artificiais, Imagens de Alta Resolução Espacial, Laser ScannerTécnicas de Sensoriamento Remoto tem ganhado especial interesse, uma vez que podem ser utilizadas para o monitoramento de sistemas e fenômenos em escala local ou global, de maneira contínua temporal e espacialmente. Redes Neurais Artificias estão entre os métodos que são capazes de trabalhar com grande quantidade de dados, com diversas características e sofrer pouca influência de ruídos. Desta forma, fez-se o uso de Redes Neurais Artificiais com o propósito de classificar dados de sensoriamento remoto. Utilizou-se de dados de alta resolução espacial, como imagens espectrais de aerolevantamento e dados altimétricos Laser Scanner, para a classificação do alvo “árvores”. Com isso, gerou-se RNA especialistas na detecção destes alvos. Os dados utilizados são de uma área densamente urbanizada, onde existe grande variabilidade de cotas e características espectrais. Os resultados mostraram que a classificação utilizando dados espectrais e altimétricos resultaram em melhores classificações, do que a utilização apenas de informações espectrais. Testou-se também a influência do tamanho das amostras de treinamento das Redes Neurais Artificiais, gerando assim uma “curva de aprendizado” das RNA. Percebeu-se que conforme se aumenta o tamanho das amostras de treinamento, existe uma tendência em aumentar a acurácia na classificação dos dados. Os acertos globais foram superiores a 87,5% quando utilizando apenas informação espectral e 97,5% quando utilizando dados espectrais e altimétricos.Boletim de Ciências GeodésicasBulletin of Geodetic SciencesCNPqPereira, Gabriel Henrique de AlmeidaCenteno, Jorge Antonio Silva2017-07-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufpr.br/bcg/article/view/52781Boletim de Ciências Geodésicas; Vol 23, No 2 (2017)Bulletin of Geodetic Sciences; Vol 23, No 2 (2017)1982-21701413-4853reponame:Boletim de Ciências Geodésicasinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRporhttps://revistas.ufpr.br/bcg/article/view/52781/32441Copyright (c) 2017 Gabriel Henrique de Almeida Pereira, Jorge Antonio Silva Centenohttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccess2017-07-31T16:00:12Zoai:revistas.ufpr.br:article/52781Revistahttps://revistas.ufpr.br/bcgPUBhttps://revistas.ufpr.br/bcg/oaiqdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br1982-21701413-4853opendoar:2017-07-31T16:00:12Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)false |
dc.title.none.fl_str_mv |
AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER |
title |
AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER |
spellingShingle |
AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER Pereira, Gabriel Henrique de Almeida Geociências; Geodésia Sensoriamento Remoto, Classificação Digital de Imagens, Redes Neurais Artificiais, Imagens de Alta Resolução Espacial, Laser Scanner |
title_short |
AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER |
title_full |
AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER |
title_fullStr |
AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER |
title_full_unstemmed |
AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER |
title_sort |
AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER |
author |
Pereira, Gabriel Henrique de Almeida |
author_facet |
Pereira, Gabriel Henrique de Almeida Centeno, Jorge Antonio Silva |
author_role |
author |
author2 |
Centeno, Jorge Antonio Silva |
author2_role |
author |
dc.contributor.none.fl_str_mv |
CNPq |
dc.contributor.author.fl_str_mv |
Pereira, Gabriel Henrique de Almeida Centeno, Jorge Antonio Silva |
dc.subject.por.fl_str_mv |
Geociências; Geodésia Sensoriamento Remoto, Classificação Digital de Imagens, Redes Neurais Artificiais, Imagens de Alta Resolução Espacial, Laser Scanner |
topic |
Geociências; Geodésia Sensoriamento Remoto, Classificação Digital de Imagens, Redes Neurais Artificiais, Imagens de Alta Resolução Espacial, Laser Scanner |
description |
Técnicas de Sensoriamento Remoto tem ganhado especial interesse, uma vez que podem ser utilizadas para o monitoramento de sistemas e fenômenos em escala local ou global, de maneira contínua temporal e espacialmente. Redes Neurais Artificias estão entre os métodos que são capazes de trabalhar com grande quantidade de dados, com diversas características e sofrer pouca influência de ruídos. Desta forma, fez-se o uso de Redes Neurais Artificiais com o propósito de classificar dados de sensoriamento remoto. Utilizou-se de dados de alta resolução espacial, como imagens espectrais de aerolevantamento e dados altimétricos Laser Scanner, para a classificação do alvo “árvores”. Com isso, gerou-se RNA especialistas na detecção destes alvos. Os dados utilizados são de uma área densamente urbanizada, onde existe grande variabilidade de cotas e características espectrais. Os resultados mostraram que a classificação utilizando dados espectrais e altimétricos resultaram em melhores classificações, do que a utilização apenas de informações espectrais. Testou-se também a influência do tamanho das amostras de treinamento das Redes Neurais Artificiais, gerando assim uma “curva de aprendizado” das RNA. Percebeu-se que conforme se aumenta o tamanho das amostras de treinamento, existe uma tendência em aumentar a acurácia na classificação dos dados. Os acertos globais foram superiores a 87,5% quando utilizando apenas informação espectral e 97,5% quando utilizando dados espectrais e altimétricos. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07-31 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufpr.br/bcg/article/view/52781 |
url |
https://revistas.ufpr.br/bcg/article/view/52781 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.ufpr.br/bcg/article/view/52781/32441 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2017 Gabriel Henrique de Almeida Pereira, Jorge Antonio Silva Centeno http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2017 Gabriel Henrique de Almeida Pereira, Jorge Antonio Silva Centeno http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Boletim de Ciências Geodésicas Bulletin of Geodetic Sciences |
publisher.none.fl_str_mv |
Boletim de Ciências Geodésicas Bulletin of Geodetic Sciences |
dc.source.none.fl_str_mv |
Boletim de Ciências Geodésicas; Vol 23, No 2 (2017) Bulletin of Geodetic Sciences; Vol 23, No 2 (2017) 1982-2170 1413-4853 reponame:Boletim de Ciências Geodésicas instname:Universidade Federal do Paraná (UFPR) instacron:UFPR |
instname_str |
Universidade Federal do Paraná (UFPR) |
instacron_str |
UFPR |
institution |
UFPR |
reponame_str |
Boletim de Ciências Geodésicas |
collection |
Boletim de Ciências Geodésicas |
repository.name.fl_str_mv |
Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR) |
repository.mail.fl_str_mv |
qdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br |
_version_ |
1799771719411433472 |