AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER

Detalhes bibliográficos
Autor(a) principal: Pereira, Gabriel Henrique de Almeida
Data de Publicação: 2017
Outros Autores: Centeno, Jorge Antonio Silva
Tipo de documento: Artigo
Idioma: por
Título da fonte: Boletim de Ciências Geodésicas
Texto Completo: https://revistas.ufpr.br/bcg/article/view/52781
Resumo: Técnicas de Sensoriamento Remoto tem ganhado especial interesse, uma vez que podem ser utilizadas para o monitoramento de sistemas e fenômenos em escala local ou global, de maneira contínua temporal e espacialmente. Redes Neurais Artificias estão entre os métodos que são capazes de trabalhar com grande quantidade de dados, com diversas características e sofrer pouca influência de ruídos. Desta forma, fez-se o uso de Redes Neurais Artificiais com o propósito de classificar dados de sensoriamento remoto. Utilizou-se de dados de alta resolução espacial, como imagens espectrais de aerolevantamento e dados altimétricos Laser Scanner, para a classificação do alvo “árvores”. Com isso, gerou-se RNA especialistas na detecção destes alvos. Os dados utilizados são de uma área densamente urbanizada, onde existe grande variabilidade de cotas e características espectrais. Os resultados mostraram que a classificação utilizando dados espectrais e altimétricos resultaram em melhores classificações, do que a utilização apenas de informações espectrais. Testou-se também a influência do tamanho das amostras de treinamento das Redes Neurais Artificiais, gerando assim uma “curva de aprendizado” das RNA. Percebeu-se que conforme se aumenta o tamanho das amostras de treinamento, existe uma tendência em aumentar a acurácia na classificação dos dados. Os acertos globais foram superiores a 87,5% quando utilizando apenas informação espectral e 97,5% quando utilizando dados espectrais e altimétricos.
id UFPR-2_b1a06da95a42ec1cc08cdce9061f7c2b
oai_identifier_str oai:revistas.ufpr.br:article/52781
network_acronym_str UFPR-2
network_name_str Boletim de Ciências Geodésicas
repository_id_str
spelling AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNERGeociências; GeodésiaSensoriamento Remoto, Classificação Digital de Imagens, Redes Neurais Artificiais, Imagens de Alta Resolução Espacial, Laser ScannerTécnicas de Sensoriamento Remoto tem ganhado especial interesse, uma vez que podem ser utilizadas para o monitoramento de sistemas e fenômenos em escala local ou global, de maneira contínua temporal e espacialmente. Redes Neurais Artificias estão entre os métodos que são capazes de trabalhar com grande quantidade de dados, com diversas características e sofrer pouca influência de ruídos. Desta forma, fez-se o uso de Redes Neurais Artificiais com o propósito de classificar dados de sensoriamento remoto. Utilizou-se de dados de alta resolução espacial, como imagens espectrais de aerolevantamento e dados altimétricos Laser Scanner, para a classificação do alvo “árvores”. Com isso, gerou-se RNA especialistas na detecção destes alvos. Os dados utilizados são de uma área densamente urbanizada, onde existe grande variabilidade de cotas e características espectrais. Os resultados mostraram que a classificação utilizando dados espectrais e altimétricos resultaram em melhores classificações, do que a utilização apenas de informações espectrais. Testou-se também a influência do tamanho das amostras de treinamento das Redes Neurais Artificiais, gerando assim uma “curva de aprendizado” das RNA. Percebeu-se que conforme se aumenta o tamanho das amostras de treinamento, existe uma tendência em aumentar a acurácia na classificação dos dados. Os acertos globais foram superiores a 87,5% quando utilizando apenas informação espectral e 97,5% quando utilizando dados espectrais e altimétricos.Boletim de Ciências GeodésicasBulletin of Geodetic SciencesCNPqPereira, Gabriel Henrique de AlmeidaCenteno, Jorge Antonio Silva2017-07-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufpr.br/bcg/article/view/52781Boletim de Ciências Geodésicas; Vol 23, No 2 (2017)Bulletin of Geodetic Sciences; Vol 23, No 2 (2017)1982-21701413-4853reponame:Boletim de Ciências Geodésicasinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRporhttps://revistas.ufpr.br/bcg/article/view/52781/32441Copyright (c) 2017 Gabriel Henrique de Almeida Pereira, Jorge Antonio Silva Centenohttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccess2017-07-31T16:00:12Zoai:revistas.ufpr.br:article/52781Revistahttps://revistas.ufpr.br/bcgPUBhttps://revistas.ufpr.br/bcg/oaiqdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br1982-21701413-4853opendoar:2017-07-31T16:00:12Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)false
dc.title.none.fl_str_mv AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER
title AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER
spellingShingle AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER
Pereira, Gabriel Henrique de Almeida
Geociências; Geodésia
Sensoriamento Remoto, Classificação Digital de Imagens, Redes Neurais Artificiais, Imagens de Alta Resolução Espacial, Laser Scanner
title_short AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER
title_full AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER
title_fullStr AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER
title_full_unstemmed AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER
title_sort AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER
author Pereira, Gabriel Henrique de Almeida
author_facet Pereira, Gabriel Henrique de Almeida
Centeno, Jorge Antonio Silva
author_role author
author2 Centeno, Jorge Antonio Silva
author2_role author
dc.contributor.none.fl_str_mv CNPq
dc.contributor.author.fl_str_mv Pereira, Gabriel Henrique de Almeida
Centeno, Jorge Antonio Silva
dc.subject.por.fl_str_mv Geociências; Geodésia
Sensoriamento Remoto, Classificação Digital de Imagens, Redes Neurais Artificiais, Imagens de Alta Resolução Espacial, Laser Scanner
topic Geociências; Geodésia
Sensoriamento Remoto, Classificação Digital de Imagens, Redes Neurais Artificiais, Imagens de Alta Resolução Espacial, Laser Scanner
description Técnicas de Sensoriamento Remoto tem ganhado especial interesse, uma vez que podem ser utilizadas para o monitoramento de sistemas e fenômenos em escala local ou global, de maneira contínua temporal e espacialmente. Redes Neurais Artificias estão entre os métodos que são capazes de trabalhar com grande quantidade de dados, com diversas características e sofrer pouca influência de ruídos. Desta forma, fez-se o uso de Redes Neurais Artificiais com o propósito de classificar dados de sensoriamento remoto. Utilizou-se de dados de alta resolução espacial, como imagens espectrais de aerolevantamento e dados altimétricos Laser Scanner, para a classificação do alvo “árvores”. Com isso, gerou-se RNA especialistas na detecção destes alvos. Os dados utilizados são de uma área densamente urbanizada, onde existe grande variabilidade de cotas e características espectrais. Os resultados mostraram que a classificação utilizando dados espectrais e altimétricos resultaram em melhores classificações, do que a utilização apenas de informações espectrais. Testou-se também a influência do tamanho das amostras de treinamento das Redes Neurais Artificiais, gerando assim uma “curva de aprendizado” das RNA. Percebeu-se que conforme se aumenta o tamanho das amostras de treinamento, existe uma tendência em aumentar a acurácia na classificação dos dados. Os acertos globais foram superiores a 87,5% quando utilizando apenas informação espectral e 97,5% quando utilizando dados espectrais e altimétricos.
publishDate 2017
dc.date.none.fl_str_mv 2017-07-31
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufpr.br/bcg/article/view/52781
url https://revistas.ufpr.br/bcg/article/view/52781
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistas.ufpr.br/bcg/article/view/52781/32441
dc.rights.driver.fl_str_mv Copyright (c) 2017 Gabriel Henrique de Almeida Pereira, Jorge Antonio Silva Centeno
http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2017 Gabriel Henrique de Almeida Pereira, Jorge Antonio Silva Centeno
http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Boletim de Ciências Geodésicas
Bulletin of Geodetic Sciences
publisher.none.fl_str_mv Boletim de Ciências Geodésicas
Bulletin of Geodetic Sciences
dc.source.none.fl_str_mv Boletim de Ciências Geodésicas; Vol 23, No 2 (2017)
Bulletin of Geodetic Sciences; Vol 23, No 2 (2017)
1982-2170
1413-4853
reponame:Boletim de Ciências Geodésicas
instname:Universidade Federal do Paraná (UFPR)
instacron:UFPR
instname_str Universidade Federal do Paraná (UFPR)
instacron_str UFPR
institution UFPR
reponame_str Boletim de Ciências Geodésicas
collection Boletim de Ciências Geodésicas
repository.name.fl_str_mv Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)
repository.mail.fl_str_mv qdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br
_version_ 1799771719411433472