PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Boletim de Ciências Geodésicas |
Texto Completo: | https://revistas.ufpr.br/bcg/article/view/60280 |
Resumo: | In northern Brazilian Amazon, the crops, savannahs and rainforests form a complex landscape where land use and land cover (LULC) mapping is difficult. Here, data from the Operational Land Imager (OLI)/Landsat-8 and Phased Array type L-band Synthetic Aperture Radar (PALSAR-2)/ALOS-2 were combined for mapping 17 LULC classes using Random Forest (RF) during the dry season. The potential thematic accuracy of each dataset was assessed and compared with results of the hybrid classification from both datasets. The results showed that the combination of PALSAR-2 HH/HV amplitudes with the reflectance of the six OLI bands produced an overall accuracy of 83% and a Kappa of 0.81, which represented an improvement of 6% in relation to the RF classification derived solely from OLI data. The RF models using OLI multispectral metrics performed better than RF models using PALSAR-2 L-band dual polarization attributes. However, the major contribution of PALSAR-2 in the savannahs was to discriminate low biomass classes such as savannah grassland and wooded savannah. |
id |
UFPR-2_e3542cff42aad74deaf768c7a3b9cc46 |
---|---|
oai_identifier_str |
oai:revistas.ufpr.br:article/60280 |
network_acronym_str |
UFPR-2 |
network_name_str |
Boletim de Ciências Geodésicas |
repository_id_str |
|
spelling |
PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZONGeociências; GeodésiaRandom Forest, LULC, hybrid classificationIn northern Brazilian Amazon, the crops, savannahs and rainforests form a complex landscape where land use and land cover (LULC) mapping is difficult. Here, data from the Operational Land Imager (OLI)/Landsat-8 and Phased Array type L-band Synthetic Aperture Radar (PALSAR-2)/ALOS-2 were combined for mapping 17 LULC classes using Random Forest (RF) during the dry season. The potential thematic accuracy of each dataset was assessed and compared with results of the hybrid classification from both datasets. The results showed that the combination of PALSAR-2 HH/HV amplitudes with the reflectance of the six OLI bands produced an overall accuracy of 83% and a Kappa of 0.81, which represented an improvement of 6% in relation to the RF classification derived solely from OLI data. The RF models using OLI multispectral metrics performed better than RF models using PALSAR-2 L-band dual polarization attributes. However, the major contribution of PALSAR-2 in the savannahs was to discriminate low biomass classes such as savannah grassland and wooded savannah.Boletim de Ciências GeodésicasBulletin of Geodetic SciencesCAPESCNPq.Pavanelli, João Arthur PompeuSantos, João Roberto dosGalvão, Lênio SoaresXaud, Maristela RamalhoXaud, Haron Abrahim Magalhães2018-07-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufpr.br/bcg/article/view/60280Boletim de Ciências Geodésicas; Vol 24, No 2 (2018)Bulletin of Geodetic Sciences; Vol 24, No 2 (2018)1982-21701413-4853reponame:Boletim de Ciências Geodésicasinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRenghttps://revistas.ufpr.br/bcg/article/view/60280/35590Copyright (c) 2018 João Arthur Pompeu Pavanelli, João Roberto dos Santos, Lênio Soares Galvão, Maristela Ramalho Xaud, Haron Abrahim Magalhães Xaudhttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccess2018-07-02T13:44:31Zoai:revistas.ufpr.br:article/60280Revistahttps://revistas.ufpr.br/bcgPUBhttps://revistas.ufpr.br/bcg/oaiqdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br1982-21701413-4853opendoar:2018-07-02T13:44:31Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)false |
dc.title.none.fl_str_mv |
PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON |
title |
PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON |
spellingShingle |
PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON Pavanelli, João Arthur Pompeu Geociências; Geodésia Random Forest, LULC, hybrid classification |
title_short |
PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON |
title_full |
PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON |
title_fullStr |
PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON |
title_full_unstemmed |
PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON |
title_sort |
PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON |
author |
Pavanelli, João Arthur Pompeu |
author_facet |
Pavanelli, João Arthur Pompeu Santos, João Roberto dos Galvão, Lênio Soares Xaud, Maristela Ramalho Xaud, Haron Abrahim Magalhães |
author_role |
author |
author2 |
Santos, João Roberto dos Galvão, Lênio Soares Xaud, Maristela Ramalho Xaud, Haron Abrahim Magalhães |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
CAPES CNPq. |
dc.contributor.author.fl_str_mv |
Pavanelli, João Arthur Pompeu Santos, João Roberto dos Galvão, Lênio Soares Xaud, Maristela Ramalho Xaud, Haron Abrahim Magalhães |
dc.subject.none.fl_str_mv |
|
dc.subject.por.fl_str_mv |
Geociências; Geodésia Random Forest, LULC, hybrid classification |
topic |
Geociências; Geodésia Random Forest, LULC, hybrid classification |
description |
In northern Brazilian Amazon, the crops, savannahs and rainforests form a complex landscape where land use and land cover (LULC) mapping is difficult. Here, data from the Operational Land Imager (OLI)/Landsat-8 and Phased Array type L-band Synthetic Aperture Radar (PALSAR-2)/ALOS-2 were combined for mapping 17 LULC classes using Random Forest (RF) during the dry season. The potential thematic accuracy of each dataset was assessed and compared with results of the hybrid classification from both datasets. The results showed that the combination of PALSAR-2 HH/HV amplitudes with the reflectance of the six OLI bands produced an overall accuracy of 83% and a Kappa of 0.81, which represented an improvement of 6% in relation to the RF classification derived solely from OLI data. The RF models using OLI multispectral metrics performed better than RF models using PALSAR-2 L-band dual polarization attributes. However, the major contribution of PALSAR-2 in the savannahs was to discriminate low biomass classes such as savannah grassland and wooded savannah. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07-02 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufpr.br/bcg/article/view/60280 |
url |
https://revistas.ufpr.br/bcg/article/view/60280 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.ufpr.br/bcg/article/view/60280/35590 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Boletim de Ciências Geodésicas Bulletin of Geodetic Sciences |
publisher.none.fl_str_mv |
Boletim de Ciências Geodésicas Bulletin of Geodetic Sciences |
dc.source.none.fl_str_mv |
Boletim de Ciências Geodésicas; Vol 24, No 2 (2018) Bulletin of Geodetic Sciences; Vol 24, No 2 (2018) 1982-2170 1413-4853 reponame:Boletim de Ciências Geodésicas instname:Universidade Federal do Paraná (UFPR) instacron:UFPR |
instname_str |
Universidade Federal do Paraná (UFPR) |
instacron_str |
UFPR |
institution |
UFPR |
reponame_str |
Boletim de Ciências Geodésicas |
collection |
Boletim de Ciências Geodésicas |
repository.name.fl_str_mv |
Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR) |
repository.mail.fl_str_mv |
qdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br |
_version_ |
1799771719477493760 |