PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON

Detalhes bibliográficos
Autor(a) principal: Pavanelli, João Arthur Pompeu
Data de Publicação: 2018
Outros Autores: Santos, João Roberto dos, Galvão, Lênio Soares, Xaud, Maristela Ramalho, Xaud, Haron Abrahim Magalhães
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Boletim de Ciências Geodésicas
Texto Completo: https://revistas.ufpr.br/bcg/article/view/60280
Resumo: In northern Brazilian Amazon, the crops, savannahs and rainforests form a complex landscape where land use and land cover (LULC) mapping is difficult. Here, data from the Operational Land Imager (OLI)/Landsat-8 and Phased Array type L-band Synthetic Aperture Radar (PALSAR-2)/ALOS-2 were combined for mapping 17 LULC classes using Random Forest (RF) during the dry season. The potential thematic accuracy of each dataset was assessed and compared with results of the hybrid classification from both datasets. The results showed that the combination of PALSAR-2 HH/HV amplitudes with the reflectance of the six OLI bands produced an overall accuracy of 83% and a Kappa of 0.81, which represented an improvement of 6% in relation to the RF classification derived solely from OLI data. The RF models using OLI multispectral metrics performed better than RF models using PALSAR-2 L-band dual polarization attributes. However, the major contribution of PALSAR-2 in the savannahs was to discriminate low biomass classes such as savannah grassland and wooded savannah.
id UFPR-2_e3542cff42aad74deaf768c7a3b9cc46
oai_identifier_str oai:revistas.ufpr.br:article/60280
network_acronym_str UFPR-2
network_name_str Boletim de Ciências Geodésicas
repository_id_str
spelling PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZONGeociências; GeodésiaRandom Forest, LULC, hybrid classificationIn northern Brazilian Amazon, the crops, savannahs and rainforests form a complex landscape where land use and land cover (LULC) mapping is difficult. Here, data from the Operational Land Imager (OLI)/Landsat-8 and Phased Array type L-band Synthetic Aperture Radar (PALSAR-2)/ALOS-2 were combined for mapping 17 LULC classes using Random Forest (RF) during the dry season. The potential thematic accuracy of each dataset was assessed and compared with results of the hybrid classification from both datasets. The results showed that the combination of PALSAR-2 HH/HV amplitudes with the reflectance of the six OLI bands produced an overall accuracy of 83% and a Kappa of 0.81, which represented an improvement of 6% in relation to the RF classification derived solely from OLI data. The RF models using OLI multispectral metrics performed better than RF models using PALSAR-2 L-band dual polarization attributes. However, the major contribution of PALSAR-2 in the savannahs was to discriminate low biomass classes such as savannah grassland and wooded savannah.Boletim de Ciências GeodésicasBulletin of Geodetic SciencesCAPESCNPq.Pavanelli, João Arthur PompeuSantos, João Roberto dosGalvão, Lênio SoaresXaud, Maristela RamalhoXaud, Haron Abrahim Magalhães2018-07-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufpr.br/bcg/article/view/60280Boletim de Ciências Geodésicas; Vol 24, No 2 (2018)Bulletin of Geodetic Sciences; Vol 24, No 2 (2018)1982-21701413-4853reponame:Boletim de Ciências Geodésicasinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRenghttps://revistas.ufpr.br/bcg/article/view/60280/35590Copyright (c) 2018 João Arthur Pompeu Pavanelli, João Roberto dos Santos, Lênio Soares Galvão, Maristela Ramalho Xaud, Haron Abrahim Magalhães Xaudhttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccess2018-07-02T13:44:31Zoai:revistas.ufpr.br:article/60280Revistahttps://revistas.ufpr.br/bcgPUBhttps://revistas.ufpr.br/bcg/oaiqdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br1982-21701413-4853opendoar:2018-07-02T13:44:31Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)false
dc.title.none.fl_str_mv PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON

title PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON
spellingShingle PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON
Pavanelli, João Arthur Pompeu
Geociências; Geodésia
Random Forest, LULC, hybrid classification
title_short PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON
title_full PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON
title_fullStr PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON
title_full_unstemmed PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON
title_sort PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON
author Pavanelli, João Arthur Pompeu
author_facet Pavanelli, João Arthur Pompeu
Santos, João Roberto dos
Galvão, Lênio Soares
Xaud, Maristela Ramalho
Xaud, Haron Abrahim Magalhães
author_role author
author2 Santos, João Roberto dos
Galvão, Lênio Soares
Xaud, Maristela Ramalho
Xaud, Haron Abrahim Magalhães
author2_role author
author
author
author
dc.contributor.none.fl_str_mv
CAPES
CNPq.
dc.contributor.author.fl_str_mv Pavanelli, João Arthur Pompeu
Santos, João Roberto dos
Galvão, Lênio Soares
Xaud, Maristela Ramalho
Xaud, Haron Abrahim Magalhães
dc.subject.none.fl_str_mv

dc.subject.por.fl_str_mv Geociências; Geodésia
Random Forest, LULC, hybrid classification
topic Geociências; Geodésia
Random Forest, LULC, hybrid classification
description In northern Brazilian Amazon, the crops, savannahs and rainforests form a complex landscape where land use and land cover (LULC) mapping is difficult. Here, data from the Operational Land Imager (OLI)/Landsat-8 and Phased Array type L-band Synthetic Aperture Radar (PALSAR-2)/ALOS-2 were combined for mapping 17 LULC classes using Random Forest (RF) during the dry season. The potential thematic accuracy of each dataset was assessed and compared with results of the hybrid classification from both datasets. The results showed that the combination of PALSAR-2 HH/HV amplitudes with the reflectance of the six OLI bands produced an overall accuracy of 83% and a Kappa of 0.81, which represented an improvement of 6% in relation to the RF classification derived solely from OLI data. The RF models using OLI multispectral metrics performed better than RF models using PALSAR-2 L-band dual polarization attributes. However, the major contribution of PALSAR-2 in the savannahs was to discriminate low biomass classes such as savannah grassland and wooded savannah.
publishDate 2018
dc.date.none.fl_str_mv 2018-07-02
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufpr.br/bcg/article/view/60280
url https://revistas.ufpr.br/bcg/article/view/60280
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.ufpr.br/bcg/article/view/60280/35590
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Boletim de Ciências Geodésicas
Bulletin of Geodetic Sciences
publisher.none.fl_str_mv Boletim de Ciências Geodésicas
Bulletin of Geodetic Sciences
dc.source.none.fl_str_mv Boletim de Ciências Geodésicas; Vol 24, No 2 (2018)
Bulletin of Geodetic Sciences; Vol 24, No 2 (2018)
1982-2170
1413-4853
reponame:Boletim de Ciências Geodésicas
instname:Universidade Federal do Paraná (UFPR)
instacron:UFPR
instname_str Universidade Federal do Paraná (UFPR)
instacron_str UFPR
institution UFPR
reponame_str Boletim de Ciências Geodésicas
collection Boletim de Ciências Geodésicas
repository.name.fl_str_mv Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)
repository.mail.fl_str_mv qdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br
_version_ 1799771719477493760