Modelagem de componentes do sistema de arrefecimento de motores a combustão baseada em máquina de vetores de suporte

Detalhes bibliográficos
Autor(a) principal: Silva Junior, Olicio da
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPR
Texto Completo: https://hdl.handle.net/1884/59508
Resumo: Orientador: Prof. Dr. Leandro dos Santos Coelho
id UFPR_c591d691398a43516a0e9b873d95607d
oai_identifier_str oai:acervodigital.ufpr.br:1884/59508
network_acronym_str UFPR
network_name_str Repositório Institucional da UFPR
repository_id_str 308
spelling Silva Junior, Olicio daUniversidade Federal do Paraná. Setor de Tecnologia. Programa de Pós-Graduação em Engenharia ElétricaCoelho, Leandro dos Santos2019-04-08T14:03:08Z2019-04-08T14:03:08Z2018https://hdl.handle.net/1884/59508Orientador: Prof. Dr. Leandro dos Santos CoelhoDissertação (mestrado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Engenharia Elétrica. Defesa : Curitiba, 12/12/2018Inclui referências: p.101-104Área de concentração: Sistemas EletrônicosResumo: A área de desenvolvimento de veículos automotivos teve ganhos com a introdução dos motores eletrônicos. A indústria automotiva tem que lidar com limites, desafiadores de operação dos motores a combustão. Limites impostos pela legislação de controle de emissões de poluentes na atmosfera, além de uma demanda crescente por economia de combustível imposta pelos dos usuários de caminhões com motores Diesel. Consequentemente a indústria tem buscado soluções que consigam aliar estas duas condições para poder vender veículos. O sistema de arrefecimento é fundamental para que um motor a combustão funcione, uma vez que a temperatura de operação do motor está diretamente ligada à queima de combustível, este possui um comportamento de controle complexo apesar do mesmo ser gerenciado eletronicamente. Nesse contexto, essa dissertação propôs-se a obter um modelo para a rotação do ventilador e para a temperatura do fluido do sistema de arrefecimento com o auxílio de métodos de Aprendizado de máquina, a partir de dados reais de medições realizadas em caminhão. Entre os algoritmos de Aprendizado de máquina avaliados estão as redes neurais artificiais, do tipo perceptron multicamadas, que se caracterizam por serem modelos caixa-preta para modelagem não-linear. Outra técnica de Aprendizado de máquina adotada foi a máquina de vetores de suporte para regressão e sua variação aplicada com o método dos mínimos quadrados por batelada com inferência estatística, fundamentada na teoria do aprendizado estatístico. O objetivo de tais técnicas é maximizar a capacidade de generalização em problemas de regressão. Os resultados obtidos, para a modelagem dos dois componentes do sistema de arrefecimento, mostraram que a máquina de vetores de suporte para regressão (regressão por vetores de suporte), quando utilizada em combinação com modelo linear estimado pelo algoritmo de mínimos quadrados em batelada com inferência estatística, obteve um desempenho superior ao das redes neurais perceptron multicamadas e também da máquina de vetores de suporte para regressão aplicada de forma isolada (sem a combinação com o modelo linear). Os modelos apresentaram desempenho acima de 80% para o sinal de rotação e acima de 60% para o modelo da temperatura, indicando que muito ainda pode ser realizado para a obtenção de modelos robustos e úteis para a indústria automotiva. Palavras-chave: Motor a combustão; Ventilador; Sistema de arrefecimento; Máquina de vetores de suporte; Rede neural perceptron multicamadas; Regressão não-linear.Abstract: The automotive vehicle development area had gained with the introduction of the electronic to engines. The automotive industry has to deal with challenging limits for the combustion engine operation, due to the legislation that controls the pollutant emission from those engines to the atmosphere and also due to a growing demand from the Diesel truck drivers for fuel economy. Therefore, the automotive industry has been searched for solutions which could solve both constrains in order to be able to sell vehicles. The cooling system is fundamental for the proper engine operation, once the engine operating temperature is directly linked to the fuel burning. That system has a complex control behavior besides being electronic managed. In this context. this dissertation aimed by means of the Machine learning algorithms, employing real data from measurements done in the truck, to estimate the fan speed and also the coolant temperature from that system. Among the assessed algorithms, are the perceptron multilayer artificial neural network, which are classified as black-box models for nonlinear modeling. Another employed Machine learning technique was the support vector machine applied to regression and its variation with least squares method in batch processing and statistical inference, this one grounded on the statistical learning theory. Machine learning algorithms aim is to maximize the generalization capacity within regression problems. The achieved results, for modeling the two cooling system components, showed that support vector machine applied to regression (regression by means of support vectors), when working with combination to the batch least squares method for linear model generation in batch processing and statistical inference, has achieved the higher performance than the perceptron multilayer artificial neural networks and also than the support vector machine applied to regression when isolated applied (without combination with the linear model). The models showed performance superior to 80% for the fan speed and 60% superior the cooling temperature model, these results indicate that much more could be performed to obtain robust and useful models to the automotive industry. Key-words: Combustion engine; Fan; Cooling system; Support Vector Machine; Multilayer perceptron neural network; Non-linear regression.104 p. : il.application/pdfAutomoveis - MotoresEngenharia ElétricaSistemas eletronicosMotores de combustão internaModelagem de componentes do sistema de arrefecimento de motores a combustão baseada em máquina de vetores de suporteinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da UFPRinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRinfo:eu-repo/semantics/openAccessORIGINALR - D - OLICIO DA SILVA JUNIOR.pdfapplication/pdf8143529https://acervodigital.ufpr.br/bitstream/1884/59508/1/R%20-%20D%20-%20OLICIO%20DA%20SILVA%20JUNIOR.pdff6f4e1f75cc78f68d3c05edf8c701a73MD51open access1884/595082019-04-08 11:03:08.672open accessoai:acervodigital.ufpr.br:1884/59508Repositório de PublicaçõesPUBhttp://acervodigital.ufpr.br/oai/requestopendoar:3082019-04-08T14:03:08Repositório Institucional da UFPR - Universidade Federal do Paraná (UFPR)false
dc.title.pt_BR.fl_str_mv Modelagem de componentes do sistema de arrefecimento de motores a combustão baseada em máquina de vetores de suporte
title Modelagem de componentes do sistema de arrefecimento de motores a combustão baseada em máquina de vetores de suporte
spellingShingle Modelagem de componentes do sistema de arrefecimento de motores a combustão baseada em máquina de vetores de suporte
Silva Junior, Olicio da
Automoveis - Motores
Engenharia Elétrica
Sistemas eletronicos
Motores de combustão interna
title_short Modelagem de componentes do sistema de arrefecimento de motores a combustão baseada em máquina de vetores de suporte
title_full Modelagem de componentes do sistema de arrefecimento de motores a combustão baseada em máquina de vetores de suporte
title_fullStr Modelagem de componentes do sistema de arrefecimento de motores a combustão baseada em máquina de vetores de suporte
title_full_unstemmed Modelagem de componentes do sistema de arrefecimento de motores a combustão baseada em máquina de vetores de suporte
title_sort Modelagem de componentes do sistema de arrefecimento de motores a combustão baseada em máquina de vetores de suporte
author Silva Junior, Olicio da
author_facet Silva Junior, Olicio da
author_role author
dc.contributor.other.pt_BR.fl_str_mv Universidade Federal do Paraná. Setor de Tecnologia. Programa de Pós-Graduação em Engenharia Elétrica
dc.contributor.author.fl_str_mv Silva Junior, Olicio da
dc.contributor.advisor1.fl_str_mv Coelho, Leandro dos Santos
contributor_str_mv Coelho, Leandro dos Santos
dc.subject.por.fl_str_mv Automoveis - Motores
Engenharia Elétrica
Sistemas eletronicos
Motores de combustão interna
topic Automoveis - Motores
Engenharia Elétrica
Sistemas eletronicos
Motores de combustão interna
description Orientador: Prof. Dr. Leandro dos Santos Coelho
publishDate 2018
dc.date.issued.fl_str_mv 2018
dc.date.accessioned.fl_str_mv 2019-04-08T14:03:08Z
dc.date.available.fl_str_mv 2019-04-08T14:03:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1884/59508
url https://hdl.handle.net/1884/59508
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 104 p. : il.
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPR
instname:Universidade Federal do Paraná (UFPR)
instacron:UFPR
instname_str Universidade Federal do Paraná (UFPR)
instacron_str UFPR
institution UFPR
reponame_str Repositório Institucional da UFPR
collection Repositório Institucional da UFPR
bitstream.url.fl_str_mv https://acervodigital.ufpr.br/bitstream/1884/59508/1/R%20-%20D%20-%20OLICIO%20DA%20SILVA%20JUNIOR.pdf
bitstream.checksum.fl_str_mv f6f4e1f75cc78f68d3c05edf8c701a73
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFPR - Universidade Federal do Paraná (UFPR)
repository.mail.fl_str_mv
_version_ 1813898821194743808