Crise, fronteiras fractais e propriedade de wada para um oscilador nao-linear forçado e amortecido
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPR |
Texto Completo: | https://hdl.handle.net/1884/40510 |
Resumo: | Orientador : Ricardo Luiz Viana |
id |
UFPR_f1f0601aefc6b00541f743a88d43f72a |
---|---|
oai_identifier_str |
oai:acervodigital.ufpr.br:1884/40510 |
network_acronym_str |
UFPR |
network_name_str |
Repositório Institucional da UFPR |
repository_id_str |
308 |
spelling |
Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em FísicaViana, Ricardo Luiz, 1964-Lipinski, Beatriz Bronislava2024-03-20T17:10:57Z2024-03-20T17:10:57Z2002https://hdl.handle.net/1884/40510Orientador : Ricardo Luiz VianaDissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em FísicaResumo: Uma crise interior ocorre quando ha uma colisao entre um atrator caotico e uma orbita periodica instavel (ou um ponto fixo instavel), coexistentes no sistema. Crise de fronteira acontece quando esta colisao ocorre com uma orbita periodica instavel (ou um ponto fixo instavel) contida na fronteira de bacia do atrator. Logo apos a ocorrencia de uma crise de fronteira, o atrator e sua bacia de atracao sao subitamente destruidos, por completo. Esta subita destruicao causa a formacao de um conjunto caotico nao-atrativo (Sela Caotica), que e um conjunto de cruzamentos homoclinicos entre variedades invariantes. A presenca de um conjunto caotico nao-atrativo para um sistema que tenha, no minimo tres bacias, e um forte indicio de que a Propriedade de Wada seja valida. Esta propriedade consiste na existencia de uma fronteira de Wada no sistema. Uma fronteira de Wada e aquela em que todos os seus pontos pertencem simultaneamente a, pelo menos, tres bacias. Uma crise pode ser caracterizada por orbitas que escapam do atrator em direcao ao infinito. Este trabalho traz o estudo de um oscilador nao-linear, forcado e amortecido, sujeito a um potencial nao-linear, o qual possui um minimo local, que representa um ponto fixo estavel do sistema e dois maximos locais, que representam dois pontos fixos instaveis. O ponto fixo estavel e um atrator, com uma correspondente bacia de atracao, chamada de bacia segura, enquanto que, os pontos fixos instaveis, sao repulsores e geram duas bacias de condicoes inicias que escapam para o infinito e sao chamadas de bacias de saida (uma a esquerda e outra a direita do ponto fixo estavel). O objetivo e encontrar um regime de parametros em que seja possivel verificar, no sistema, as propriedades aqui descritas. Esta verificacao e feita atraves da analise do espaco de fase e do espaco de parametros do sistema, utilizando-se de tecnicas computacionais de simulacao numerica.Abstract: An interior crisis happens when occurs when there is in the system, a collision between a chaotic attractor and an unstable fixed point or periodic orbit, coexisting in the system. A boundary crisis happens when this collision occurs between a chaotic attractor and an unstable fixed point or periodic orbit on the basin boundary attraction. The chaotic attractor and its basin of attraction are suddenly destroyed right after the occurrence of a boundary crisis. This sudden destruction causes the formation of a nonattracting chaotic set in the system, which is a set of homoclinic crossings among invariants manifolds of the system. The presence of a nonattracting chaotic set, to the system that contains, at least, three attraction basins, offers a strong indicative that the system presents the Wada Property. This property consists on the existence of a Wada boundary basin in the system. All the points of a Wada boundary basin belong, simultaneously, at three basins. A crisis can be characterized by orbits that run away from the attractor toward to the infinity. This work carries on the study of a nonlinear ocillator forced and damped subjected to a nonlinear potential that presents a local minimum, representing the stable fixed point of the system, and two local maximums, representing two unstable fixed points of the system. The stable fixed point is an attractor and generats the attraction basin of the system, called steady basin, while the unstable fixed points are repulsers and generate two basins of initial conditions that escape toward to infinity and are called of exit basins (one to the left and other to the right of the stable fixed point). The objective is to find a system parameters set that presents the properties here described. It is done by means of the analysis of the phase space and of the parameter space of the system, using computer tecniques of numerical simulation.89p. : il.application/pdfDisponível em formato digitalOsciladores não-linearesSimilaridade (Física)DimensõesFísicaCrise, fronteiras fractais e propriedade de wada para um oscilador nao-linear forçado e amortecidoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da UFPRinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRinfo:eu-repo/semantics/openAccessTEXTD - BEATRIZ BRONISLAVA LIPINSKI.pdf.txtExtracted Texttext/plain109980https://acervodigital.ufpr.br/bitstream/1884/40510/1/D%20-%20BEATRIZ%20BRONISLAVA%20LIPINSKI.pdf.txt4515f80327f6ab12454f633269be0524MD51open accessORIGINALD - BEATRIZ BRONISLAVA LIPINSKI.pdfapplication/pdf30432967https://acervodigital.ufpr.br/bitstream/1884/40510/2/D%20-%20BEATRIZ%20BRONISLAVA%20LIPINSKI.pdf0042d4523f7c9b24d6fc85ab1059f766MD52open accessTHUMBNAILD - BEATRIZ BRONISLAVA LIPINSKI.pdf.jpgGenerated Thumbnailimage/jpeg1239https://acervodigital.ufpr.br/bitstream/1884/40510/3/D%20-%20BEATRIZ%20BRONISLAVA%20LIPINSKI.pdf.jpg2109b24b450a62f68b5e3793334c7389MD53open access1884/405102024-03-20 14:10:57.818open accessoai:acervodigital.ufpr.br:1884/40510Repositório de PublicaçõesPUBhttp://acervodigital.ufpr.br/oai/requestopendoar:3082024-03-20T17:10:57Repositório Institucional da UFPR - Universidade Federal do Paraná (UFPR)false |
dc.title.pt_BR.fl_str_mv |
Crise, fronteiras fractais e propriedade de wada para um oscilador nao-linear forçado e amortecido |
title |
Crise, fronteiras fractais e propriedade de wada para um oscilador nao-linear forçado e amortecido |
spellingShingle |
Crise, fronteiras fractais e propriedade de wada para um oscilador nao-linear forçado e amortecido Lipinski, Beatriz Bronislava Osciladores não-lineares Similaridade (Física) Dimensões Física |
title_short |
Crise, fronteiras fractais e propriedade de wada para um oscilador nao-linear forçado e amortecido |
title_full |
Crise, fronteiras fractais e propriedade de wada para um oscilador nao-linear forçado e amortecido |
title_fullStr |
Crise, fronteiras fractais e propriedade de wada para um oscilador nao-linear forçado e amortecido |
title_full_unstemmed |
Crise, fronteiras fractais e propriedade de wada para um oscilador nao-linear forçado e amortecido |
title_sort |
Crise, fronteiras fractais e propriedade de wada para um oscilador nao-linear forçado e amortecido |
author |
Lipinski, Beatriz Bronislava |
author_facet |
Lipinski, Beatriz Bronislava |
author_role |
author |
dc.contributor.other.pt_BR.fl_str_mv |
Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Física |
dc.contributor.advisor1.fl_str_mv |
Viana, Ricardo Luiz, 1964- |
dc.contributor.author.fl_str_mv |
Lipinski, Beatriz Bronislava |
contributor_str_mv |
Viana, Ricardo Luiz, 1964- |
dc.subject.por.fl_str_mv |
Osciladores não-lineares Similaridade (Física) Dimensões Física |
topic |
Osciladores não-lineares Similaridade (Física) Dimensões Física |
description |
Orientador : Ricardo Luiz Viana |
publishDate |
2002 |
dc.date.issued.fl_str_mv |
2002 |
dc.date.accessioned.fl_str_mv |
2024-03-20T17:10:57Z |
dc.date.available.fl_str_mv |
2024-03-20T17:10:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1884/40510 |
url |
https://hdl.handle.net/1884/40510 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.pt_BR.fl_str_mv |
Disponível em formato digital |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
89p. : il. application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPR instname:Universidade Federal do Paraná (UFPR) instacron:UFPR |
instname_str |
Universidade Federal do Paraná (UFPR) |
instacron_str |
UFPR |
institution |
UFPR |
reponame_str |
Repositório Institucional da UFPR |
collection |
Repositório Institucional da UFPR |
bitstream.url.fl_str_mv |
https://acervodigital.ufpr.br/bitstream/1884/40510/1/D%20-%20BEATRIZ%20BRONISLAVA%20LIPINSKI.pdf.txt https://acervodigital.ufpr.br/bitstream/1884/40510/2/D%20-%20BEATRIZ%20BRONISLAVA%20LIPINSKI.pdf https://acervodigital.ufpr.br/bitstream/1884/40510/3/D%20-%20BEATRIZ%20BRONISLAVA%20LIPINSKI.pdf.jpg |
bitstream.checksum.fl_str_mv |
4515f80327f6ab12454f633269be0524 0042d4523f7c9b24d6fc85ab1059f766 2109b24b450a62f68b5e3793334c7389 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPR - Universidade Federal do Paraná (UFPR) |
repository.mail.fl_str_mv |
|
_version_ |
1813898774805741568 |