Transcriptome analysis using RNA-Seq fromexperiments with and without biological replicates: areview

Detalhes bibliográficos
Autor(a) principal: MOLINARI, Mayla Daiane Correa
Data de Publicação: 2021
Outros Autores: FUGANTI-PAGLIARINI, Renata, MENDONÇA, Jéssika Angelotti, BARBOSA, Daniel de Amorim, MARIN, Daniel Rockenbach, MERTZ-HENNING, Liliane, NEPOMUCENO, Alexandre Lima
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRA
Texto Completo: http://repositorio.ufra.edu.br/jspui/handle/123456789/1506
Resumo: The discovery of nucleic acids opened new frontiers of knowledge, enablingresearchers to access an enormous amount of data, through large-scale sequencing methodologiesand bioinformatics tools. Amongst these new possibilities, RNA-Seq has been used to identify andquantify RNA molecules. To obtain more accurate biological responses from RNA-Seq data somequestions should be considered such as experimental design, type ofsynthesized library, size ofthefragments generated, number ofbiological replicates, depth, and coverage ofthe sequencing, speciesgenome availability and, the choice of software to properly perform the computational analyzes.Accurate bioinformatics analyzes allow the selection ofgenes with a lower error rate, increasing thevalidation assertiveness via RT-qPCR and thus, reducing costs. The objective of this review was topresent the analysis stages of RNA-Seq data, from experimental design to systems biology,considering relevant points, as well as to pointed out some software currently available to carry theseanalyzes out. Besides, with this review, we aimed to help the academic community to understand allsteps and biases involved in RNA-Seq data analysis, from experiments with or without biologicalreplicates.
id UFRA-1_0da6b7ff777957d3df3494bcf025f24d
oai_identifier_str oai:repositorio.ufra.edu.br:123456789/1506
network_acronym_str UFRA-1
network_name_str Repositório Institucional da UFRA
repository_id_str
spelling Transcriptome analysis using RNA-Seq fromexperiments with and without biological replicates: areviewAnálise de transcriptoma de experimentos de RNA- Seq com e sem repetições biológicas: revisão.RNA-SeqRNA - SequenciamentoRNA - MoléculasÁcidos nucléicosGenomaGenomeThe discovery of nucleic acids opened new frontiers of knowledge, enablingresearchers to access an enormous amount of data, through large-scale sequencing methodologiesand bioinformatics tools. Amongst these new possibilities, RNA-Seq has been used to identify andquantify RNA molecules. To obtain more accurate biological responses from RNA-Seq data somequestions should be considered such as experimental design, type ofsynthesized library, size ofthefragments generated, number ofbiological replicates, depth, and coverage ofthe sequencing, speciesgenome availability and, the choice of software to properly perform the computational analyzes.Accurate bioinformatics analyzes allow the selection ofgenes with a lower error rate, increasing thevalidation assertiveness via RT-qPCR and thus, reducing costs. The objective of this review was topresent the analysis stages of RNA-Seq data, from experimental design to systems biology,considering relevant points, as well as to pointed out some software currently available to carry theseanalyzes out. Besides, with this review, we aimed to help the academic community to understand allsteps and biases involved in RNA-Seq data analysis, from experiments with or without biologicalreplicates.A descoberta de ácidos nucléicos abriu novas fronteiras de conhecimento, permitindoque os pesquisadores acessassem uma enorme quantidade de dados, através de metodologias desequenciamento em larga escala e ferramentas de bioinformática. Entre essas novas possibilidades,o RNA-Seq (sequenciamento de RNA) tem sido usado para identificar e quantificar moléculas deRNA. Para obter respostas biológicas mais precisas a partir dos dados de RNA-Seq, algumasquestões devem ser consideradas, como o desenho experimental, o tipo de biblioteca sintetizada, otamanho dos fragmentos gerados, o número de repetições biológicas, a profundidade e cobertura dosequenciamento, a disponibilidade do genoma da espécie e, a escolha dos softwares para executaradequadamente as análises computacionais. Análises bioinformáticas precisas permitem a seleçãode genes com menor taxa de erro, aumentando a assertividade da validação via RT-qPCR e, assim,reduzindo custos. O objetivo desta revisão foi apresentar as etapas de análise de dados de RNA-Seq,desde o projeto experimental até a biologia dos sistemas, considerando pontos relevantes, bemcomo apontar alguns softwares atualmente disponíveis para realizar essas análises. Além disso, comesta revisão, objetivamos ajudar a comunidade acadêmica a compreender todas as etapas e viesesenvolvidos na análise de dados de RNA-Seq, a partir de experimentos com ou sem réplicasbiológicas.Revista de Ciências Agrárias2022-02-08T01:21:17Z2022-02-08T01:21:17Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfMOLINARI, M. D. C. et al. Transcriptome analysis using RNA-Seq fromexperiments with and without biological replicates: areview. Revista de Ciências Agrárias, Belém, v. 64, p. 1-13, 2021. Disponível em: http://repositorio.ufra.edu.br/jspui/handle/123456789/1506. Acesso em:2177-8760http://repositorio.ufra.edu.br/jspui/handle/123456789/1506Attribution-NonCommercial-NoDerivs 3.0 United Stateshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessMOLINARI, Mayla Daiane CorreaFUGANTI-PAGLIARINI, RenataMENDONÇA, Jéssika AngelottiBARBOSA, Daniel de AmorimMARIN, Daniel RockenbachMERTZ-HENNING, LilianeNEPOMUCENO, Alexandre Limaengreponame:Repositório Institucional da UFRAinstname:Universidade Federal Rural da Amazônia (UFRA)instacron:UFRA2022-02-08T01:34:36Zoai:repositorio.ufra.edu.br:123456789/1506Repositório Institucionalhttp://repositorio.ufra.edu.br/jspui/PUBhttp://repositorio.ufra.edu.br/oai/requestrepositorio@ufra.edu.br || riufra2018@gmail.comopendoar:2022-02-08T01:34:36Repositório Institucional da UFRA - Universidade Federal Rural da Amazônia (UFRA)false
dc.title.none.fl_str_mv Transcriptome analysis using RNA-Seq fromexperiments with and without biological replicates: areview
Análise de transcriptoma de experimentos de RNA- Seq com e sem repetições biológicas: revisão.
title Transcriptome analysis using RNA-Seq fromexperiments with and without biological replicates: areview
spellingShingle Transcriptome analysis using RNA-Seq fromexperiments with and without biological replicates: areview
MOLINARI, Mayla Daiane Correa
RNA-Seq
RNA - Sequenciamento
RNA - Moléculas
Ácidos nucléicos
Genoma
Genome
title_short Transcriptome analysis using RNA-Seq fromexperiments with and without biological replicates: areview
title_full Transcriptome analysis using RNA-Seq fromexperiments with and without biological replicates: areview
title_fullStr Transcriptome analysis using RNA-Seq fromexperiments with and without biological replicates: areview
title_full_unstemmed Transcriptome analysis using RNA-Seq fromexperiments with and without biological replicates: areview
title_sort Transcriptome analysis using RNA-Seq fromexperiments with and without biological replicates: areview
author MOLINARI, Mayla Daiane Correa
author_facet MOLINARI, Mayla Daiane Correa
FUGANTI-PAGLIARINI, Renata
MENDONÇA, Jéssika Angelotti
BARBOSA, Daniel de Amorim
MARIN, Daniel Rockenbach
MERTZ-HENNING, Liliane
NEPOMUCENO, Alexandre Lima
author_role author
author2 FUGANTI-PAGLIARINI, Renata
MENDONÇA, Jéssika Angelotti
BARBOSA, Daniel de Amorim
MARIN, Daniel Rockenbach
MERTZ-HENNING, Liliane
NEPOMUCENO, Alexandre Lima
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv MOLINARI, Mayla Daiane Correa
FUGANTI-PAGLIARINI, Renata
MENDONÇA, Jéssika Angelotti
BARBOSA, Daniel de Amorim
MARIN, Daniel Rockenbach
MERTZ-HENNING, Liliane
NEPOMUCENO, Alexandre Lima
dc.subject.por.fl_str_mv RNA-Seq
RNA - Sequenciamento
RNA - Moléculas
Ácidos nucléicos
Genoma
Genome
topic RNA-Seq
RNA - Sequenciamento
RNA - Moléculas
Ácidos nucléicos
Genoma
Genome
description The discovery of nucleic acids opened new frontiers of knowledge, enablingresearchers to access an enormous amount of data, through large-scale sequencing methodologiesand bioinformatics tools. Amongst these new possibilities, RNA-Seq has been used to identify andquantify RNA molecules. To obtain more accurate biological responses from RNA-Seq data somequestions should be considered such as experimental design, type ofsynthesized library, size ofthefragments generated, number ofbiological replicates, depth, and coverage ofthe sequencing, speciesgenome availability and, the choice of software to properly perform the computational analyzes.Accurate bioinformatics analyzes allow the selection ofgenes with a lower error rate, increasing thevalidation assertiveness via RT-qPCR and thus, reducing costs. The objective of this review was topresent the analysis stages of RNA-Seq data, from experimental design to systems biology,considering relevant points, as well as to pointed out some software currently available to carry theseanalyzes out. Besides, with this review, we aimed to help the academic community to understand allsteps and biases involved in RNA-Seq data analysis, from experiments with or without biologicalreplicates.
publishDate 2021
dc.date.none.fl_str_mv 2021
2022-02-08T01:21:17Z
2022-02-08T01:21:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv MOLINARI, M. D. C. et al. Transcriptome analysis using RNA-Seq fromexperiments with and without biological replicates: areview. Revista de Ciências Agrárias, Belém, v. 64, p. 1-13, 2021. Disponível em: http://repositorio.ufra.edu.br/jspui/handle/123456789/1506. Acesso em:
2177-8760
http://repositorio.ufra.edu.br/jspui/handle/123456789/1506
identifier_str_mv MOLINARI, M. D. C. et al. Transcriptome analysis using RNA-Seq fromexperiments with and without biological replicates: areview. Revista de Ciências Agrárias, Belém, v. 64, p. 1-13, 2021. Disponível em: http://repositorio.ufra.edu.br/jspui/handle/123456789/1506. Acesso em:
2177-8760
url http://repositorio.ufra.edu.br/jspui/handle/123456789/1506
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 United States
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 United States
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Revista de Ciências Agrárias
publisher.none.fl_str_mv Revista de Ciências Agrárias
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRA
instname:Universidade Federal Rural da Amazônia (UFRA)
instacron:UFRA
instname_str Universidade Federal Rural da Amazônia (UFRA)
instacron_str UFRA
institution UFRA
reponame_str Repositório Institucional da UFRA
collection Repositório Institucional da UFRA
repository.name.fl_str_mv Repositório Institucional da UFRA - Universidade Federal Rural da Amazônia (UFRA)
repository.mail.fl_str_mv repositorio@ufra.edu.br || riufra2018@gmail.com
_version_ 1813895244548145152