Biometric analysis of cassava clones

Detalhes bibliográficos
Autor(a) principal: Almeida, Ísis Fernanda de
Data de Publicação: 2019
Outros Autores: Jesus, Adriana Madeira Santos, Almeida, Ramon Vinicius de, Leite, Bianca Stefáni Arantes, Prado, Mayara Cardoso do
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista de Ciências Agrárias (Belém. Online)
Texto Completo: https://ajaes.ufra.edu.br/index.php/ajaes/article/view/2950
Resumo: In the last ten years cassava roots represented the fourth most produced commodity in Brazil. Given its commercial importance, higher yields are constantly sought in breeding programs. This study was aimed at conducting a biometric analysis of cassava clones based on the estimation/prediction of genetic parameters and correlated genetic gain using mixed models and path analysis, respectively. Forty-eight clones were evaluated in a randomized block design with two replicates. The experiment was carried out in northern Minas Gerais in 2010. The agronomic characteristics evaluated were plant height (PH), fresh weight of aerial parts (FWAP), fresh root weight (FRW), fresh weight of commercial roots (FWCR), root length (RL), and root diameter (RD). These traits were evaluated at six and twelve months after planting. All traits examined were significantly affected by genotype. FWAP, RL and RD changed according the time of harvesting and RL was superior at six months. Accuracy was highest for PH (0.90) and lowest for FRW and FWCR (0.64). UFLA 42 was the most commercially productive. The trait RL exhibited the highest gain via correlated response to FWCR at twelve months after planting. At six months after planting, no traits were suitable for indirect selection. The traits PH and FWAP had little relevance as secondary components in path analysis.
id UFRA_09e31fbb2da2106a084d19209663f443
oai_identifier_str oai:ojs.www.periodicos.ufra.edu.br:article/2950
network_acronym_str UFRA
network_name_str Revista de Ciências Agrárias (Belém. Online)
repository_id_str
spelling Biometric analysis of cassava clonesAnálise biométrica de clones de mandiocaMixed models, genotypic effects, analysis of deviance, path analysisclones de mandiocaIn the last ten years cassava roots represented the fourth most produced commodity in Brazil. Given its commercial importance, higher yields are constantly sought in breeding programs. This study was aimed at conducting a biometric analysis of cassava clones based on the estimation/prediction of genetic parameters and correlated genetic gain using mixed models and path analysis, respectively. Forty-eight clones were evaluated in a randomized block design with two replicates. The experiment was carried out in northern Minas Gerais in 2010. The agronomic characteristics evaluated were plant height (PH), fresh weight of aerial parts (FWAP), fresh root weight (FRW), fresh weight of commercial roots (FWCR), root length (RL), and root diameter (RD). These traits were evaluated at six and twelve months after planting. All traits examined were significantly affected by genotype. FWAP, RL and RD changed according the time of harvesting and RL was superior at six months. Accuracy was highest for PH (0.90) and lowest for FRW and FWCR (0.64). UFLA 42 was the most commercially productive. The trait RL exhibited the highest gain via correlated response to FWCR at twelve months after planting. At six months after planting, no traits were suitable for indirect selection. The traits PH and FWAP had little relevance as secondary components in path analysis.Nos últimos dez anos a mandioca foi a quarta commodity mais produzida no Brasil. Dada sua importância econômica, constantemente, busca-se ganhos em produção em programas de melhoramento genético. O objetivo deste trabalho foi estimar/predizer os parâmetros genéticos e o ganho genético correlacionado usando modelos mistos e a análise de trilha, respectivamente. Quarenta e oito clones foram avaliados no delineamento em blocos ao acaso, com duas repetições. O experimento foi realizado na região norte do estado de Minas Gerais, no ano de 2010. As características agronômicas avaliadas foram altura de planta (AP), massa fresca da parte aérea (MFPA), massa fresca da raiz (MFR), massa fresca das raízes comerciais (MFRCO), comprimento de raiz (COR) e diâmetro de raiz (DIR). Os clones foram avaliados aos seis e doze meses de colheita. Todos os caracteres apresentaram significância para o efeito de genótipo. Somente MFPA, COR e DIR variaram para época de colheita, sendo que apenas COR foi superior aos seis meses. AP apresentou a maior acurácia seletiva (0,90) e MFR e MFRCO a menor (0,64). O clone UFLA 42 se destacou por ser o mais produtivo comercialmente. A característica COR mostrou-se superior para ganhos via resposta correlacionada em MFRCO aos doze meses de colheita, e aos seis nenhuma característica apresentou-se adequada para a seleção indireta. As características AP e MFPA não apresentaram relevância como componentes de produção secundários para a análise de trilha.Universidade Federal Rural da Amazônia/UFRA2019-09-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTextoapplication/pdfhttps://ajaes.ufra.edu.br/index.php/ajaes/article/view/2950Amazonian Journal of Agricultural Sciences Journal of Agricultural and Environmental Sciences; Vol 62 (2019): RCARevista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciences; v. 62 (2019): RCA2177-87601517-591Xreponame:Revista de Ciências Agrárias (Belém. Online)instname:Universidade Federal Rural da Amazônia (UFRA)instacron:UFRAenghttps://ajaes.ufra.edu.br/index.php/ajaes/article/view/2950/1567Copyright (c) 2019 Revista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciencesinfo:eu-repo/semantics/openAccessAlmeida, Ísis Fernanda deJesus, Adriana Madeira SantosAlmeida, Ramon Vinicius deLeite, Bianca Stefáni ArantesPrado, Mayara Cardoso do2020-01-20T14:14:53Zoai:ojs.www.periodicos.ufra.edu.br:article/2950Revistahttps://ajaes.ufra.edu.br/index.php/ajaes/PUBhttps://ajaes.ufra.edu.br/index.php/ajaes/oaiallan.lobato@ufra.edu.br || ajaes.suporte@gmail.com2177-87601517-591Xopendoar:2020-01-20T14:14:53Revista de Ciências Agrárias (Belém. Online) - Universidade Federal Rural da Amazônia (UFRA)false
dc.title.none.fl_str_mv Biometric analysis of cassava clones
Análise biométrica de clones de mandioca
title Biometric analysis of cassava clones
spellingShingle Biometric analysis of cassava clones
Almeida, Ísis Fernanda de
Mixed models, genotypic effects, analysis of deviance, path analysis
clones de mandioca
title_short Biometric analysis of cassava clones
title_full Biometric analysis of cassava clones
title_fullStr Biometric analysis of cassava clones
title_full_unstemmed Biometric analysis of cassava clones
title_sort Biometric analysis of cassava clones
author Almeida, Ísis Fernanda de
author_facet Almeida, Ísis Fernanda de
Jesus, Adriana Madeira Santos
Almeida, Ramon Vinicius de
Leite, Bianca Stefáni Arantes
Prado, Mayara Cardoso do
author_role author
author2 Jesus, Adriana Madeira Santos
Almeida, Ramon Vinicius de
Leite, Bianca Stefáni Arantes
Prado, Mayara Cardoso do
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Almeida, Ísis Fernanda de
Jesus, Adriana Madeira Santos
Almeida, Ramon Vinicius de
Leite, Bianca Stefáni Arantes
Prado, Mayara Cardoso do
dc.subject.por.fl_str_mv Mixed models, genotypic effects, analysis of deviance, path analysis
clones de mandioca
topic Mixed models, genotypic effects, analysis of deviance, path analysis
clones de mandioca
description In the last ten years cassava roots represented the fourth most produced commodity in Brazil. Given its commercial importance, higher yields are constantly sought in breeding programs. This study was aimed at conducting a biometric analysis of cassava clones based on the estimation/prediction of genetic parameters and correlated genetic gain using mixed models and path analysis, respectively. Forty-eight clones were evaluated in a randomized block design with two replicates. The experiment was carried out in northern Minas Gerais in 2010. The agronomic characteristics evaluated were plant height (PH), fresh weight of aerial parts (FWAP), fresh root weight (FRW), fresh weight of commercial roots (FWCR), root length (RL), and root diameter (RD). These traits were evaluated at six and twelve months after planting. All traits examined were significantly affected by genotype. FWAP, RL and RD changed according the time of harvesting and RL was superior at six months. Accuracy was highest for PH (0.90) and lowest for FRW and FWCR (0.64). UFLA 42 was the most commercially productive. The trait RL exhibited the highest gain via correlated response to FWCR at twelve months after planting. At six months after planting, no traits were suitable for indirect selection. The traits PH and FWAP had little relevance as secondary components in path analysis.
publishDate 2019
dc.date.none.fl_str_mv 2019-09-23
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Texto
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ajaes.ufra.edu.br/index.php/ajaes/article/view/2950
url https://ajaes.ufra.edu.br/index.php/ajaes/article/view/2950
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://ajaes.ufra.edu.br/index.php/ajaes/article/view/2950/1567
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural da Amazônia/UFRA
publisher.none.fl_str_mv Universidade Federal Rural da Amazônia/UFRA
dc.source.none.fl_str_mv Amazonian Journal of Agricultural Sciences Journal of Agricultural and Environmental Sciences; Vol 62 (2019): RCA
Revista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciences; v. 62 (2019): RCA
2177-8760
1517-591X
reponame:Revista de Ciências Agrárias (Belém. Online)
instname:Universidade Federal Rural da Amazônia (UFRA)
instacron:UFRA
instname_str Universidade Federal Rural da Amazônia (UFRA)
instacron_str UFRA
institution UFRA
reponame_str Revista de Ciências Agrárias (Belém. Online)
collection Revista de Ciências Agrárias (Belém. Online)
repository.name.fl_str_mv Revista de Ciências Agrárias (Belém. Online) - Universidade Federal Rural da Amazônia (UFRA)
repository.mail.fl_str_mv allan.lobato@ufra.edu.br || ajaes.suporte@gmail.com
_version_ 1797231629916176384