Automatic theory formation in graph theory
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Computer Society |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65001999000300003 |
Resumo: | This paper presents SCOT, a system for automatic theory construction in the domain of Graph Theory. Following on the footsteps of the programs ARE [9], HR [1] and Cyrano [6], concept discovery is modeled as search in a concept space. We propose a classification for discovery heuristics, which takes into account the main processes related to theory construction: concept construction, example production, example analysis, conjecture construction, and conjecture analysis. |
id |
UFRGS-28_598f43359741b208ac951becee0885f1 |
---|---|
oai_identifier_str |
oai:scielo:S0104-65001999000300003 |
network_acronym_str |
UFRGS-28 |
network_name_str |
Journal of the Brazilian Computer Society |
repository_id_str |
|
spelling |
Automatic theory formation in graph theoryMachine learningtheory refinementconstructive inductionunsupervised learningThis paper presents SCOT, a system for automatic theory construction in the domain of Graph Theory. Following on the footsteps of the programs ARE [9], HR [1] and Cyrano [6], concept discovery is modeled as search in a concept space. We propose a classification for discovery heuristics, which takes into account the main processes related to theory construction: concept construction, example production, example analysis, conjecture construction, and conjecture analysis.Sociedade Brasileira de Computação1999-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65001999000300003Journal of the Brazilian Computer Society v.6 n.2 1999reponame:Journal of the Brazilian Computer Societyinstname:Sociedade Brasileira de Computação (SBC)instacron:UFRGS10.1590/S0104-65001999000300003info:eu-repo/semantics/openAccessPistori,HemersonWainer,Jacqueseng2000-07-31T00:00:00Zoai:scielo:S0104-65001999000300003Revistahttps://journal-bcs.springeropen.com/PUBhttps://old.scielo.br/oai/scielo-oai.phpjbcs@icmc.sc.usp.br1678-48040104-6500opendoar:2000-07-31T00:00Journal of the Brazilian Computer Society - Sociedade Brasileira de Computação (SBC)false |
dc.title.none.fl_str_mv |
Automatic theory formation in graph theory |
title |
Automatic theory formation in graph theory |
spellingShingle |
Automatic theory formation in graph theory Pistori,Hemerson Machine learning theory refinement constructive induction unsupervised learning |
title_short |
Automatic theory formation in graph theory |
title_full |
Automatic theory formation in graph theory |
title_fullStr |
Automatic theory formation in graph theory |
title_full_unstemmed |
Automatic theory formation in graph theory |
title_sort |
Automatic theory formation in graph theory |
author |
Pistori,Hemerson |
author_facet |
Pistori,Hemerson Wainer,Jacques |
author_role |
author |
author2 |
Wainer,Jacques |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Pistori,Hemerson Wainer,Jacques |
dc.subject.por.fl_str_mv |
Machine learning theory refinement constructive induction unsupervised learning |
topic |
Machine learning theory refinement constructive induction unsupervised learning |
description |
This paper presents SCOT, a system for automatic theory construction in the domain of Graph Theory. Following on the footsteps of the programs ARE [9], HR [1] and Cyrano [6], concept discovery is modeled as search in a concept space. We propose a classification for discovery heuristics, which takes into account the main processes related to theory construction: concept construction, example production, example analysis, conjecture construction, and conjecture analysis. |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65001999000300003 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65001999000300003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-65001999000300003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Computação |
publisher.none.fl_str_mv |
Sociedade Brasileira de Computação |
dc.source.none.fl_str_mv |
Journal of the Brazilian Computer Society v.6 n.2 1999 reponame:Journal of the Brazilian Computer Society instname:Sociedade Brasileira de Computação (SBC) instacron:UFRGS |
instname_str |
Sociedade Brasileira de Computação (SBC) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Journal of the Brazilian Computer Society |
collection |
Journal of the Brazilian Computer Society |
repository.name.fl_str_mv |
Journal of the Brazilian Computer Society - Sociedade Brasileira de Computação (SBC) |
repository.mail.fl_str_mv |
jbcs@icmc.sc.usp.br |
_version_ |
1754734669536952320 |