Concurrent blind channel equalization with phase transmittance rbf neural networks

Detalhes bibliográficos
Autor(a) principal: Loss,Diego Vier
Data de Publicação: 2007
Outros Autores: Castro,Maria Cristina Felippetto De, Franco,Paulo Roberto Girardello, Castro,Fernando César Comparsi de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Computer Society
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002007000100003
Resumo: This paper presents a new complex valued radial basis function (RBF) neural network (NN) with phase transmittance between the input nodes and output, which makes it suitable for channel equalization on quadrature digital modulation systems. The new Phase Transmittance RBFNN (PTRBFNN) differs from the classical complex valued RBFNN in that it does not strictly rely on the Euclidean distance between the input vector and the center vectors, thus enabling the transference of phase information from input to output. In the context of blind channel equalization, results have shown that the PTRBFNN not only solves the phase uncertainty of the classical complex valued RBFNN but also presents a faster convergence rate.comes the abstract of the paper.
id UFRGS-28_7c103c7a26cc2700091fe1ff8ca62247
oai_identifier_str oai:scielo:S0104-65002007000100003
network_acronym_str UFRGS-28
network_name_str Journal of the Brazilian Computer Society
repository_id_str
spelling Concurrent blind channel equalization with phase transmittance rbf neural networksNeural NetworkEqualizerPhaseConcurrentBlindThis paper presents a new complex valued radial basis function (RBF) neural network (NN) with phase transmittance between the input nodes and output, which makes it suitable for channel equalization on quadrature digital modulation systems. The new Phase Transmittance RBFNN (PTRBFNN) differs from the classical complex valued RBFNN in that it does not strictly rely on the Euclidean distance between the input vector and the center vectors, thus enabling the transference of phase information from input to output. In the context of blind channel equalization, results have shown that the PTRBFNN not only solves the phase uncertainty of the classical complex valued RBFNN but also presents a faster convergence rate.comes the abstract of the paper.Sociedade Brasileira de Computação2007-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002007000100003Journal of the Brazilian Computer Society v.12 n.4 2007reponame:Journal of the Brazilian Computer Societyinstname:Sociedade Brasileira de Computação (SBC)instacron:UFRGS10.1590/S0104-65002007000100003info:eu-repo/semantics/openAccessLoss,Diego VierCastro,Maria Cristina Felippetto DeFranco,Paulo Roberto GirardelloCastro,Fernando César Comparsi deeng2010-05-21T00:00:00Zoai:scielo:S0104-65002007000100003Revistahttps://journal-bcs.springeropen.com/PUBhttps://old.scielo.br/oai/scielo-oai.phpjbcs@icmc.sc.usp.br1678-48040104-6500opendoar:2010-05-21T00:00Journal of the Brazilian Computer Society - Sociedade Brasileira de Computação (SBC)false
dc.title.none.fl_str_mv Concurrent blind channel equalization with phase transmittance rbf neural networks
title Concurrent blind channel equalization with phase transmittance rbf neural networks
spellingShingle Concurrent blind channel equalization with phase transmittance rbf neural networks
Loss,Diego Vier
Neural Network
Equalizer
Phase
Concurrent
Blind
title_short Concurrent blind channel equalization with phase transmittance rbf neural networks
title_full Concurrent blind channel equalization with phase transmittance rbf neural networks
title_fullStr Concurrent blind channel equalization with phase transmittance rbf neural networks
title_full_unstemmed Concurrent blind channel equalization with phase transmittance rbf neural networks
title_sort Concurrent blind channel equalization with phase transmittance rbf neural networks
author Loss,Diego Vier
author_facet Loss,Diego Vier
Castro,Maria Cristina Felippetto De
Franco,Paulo Roberto Girardello
Castro,Fernando César Comparsi de
author_role author
author2 Castro,Maria Cristina Felippetto De
Franco,Paulo Roberto Girardello
Castro,Fernando César Comparsi de
author2_role author
author
author
dc.contributor.author.fl_str_mv Loss,Diego Vier
Castro,Maria Cristina Felippetto De
Franco,Paulo Roberto Girardello
Castro,Fernando César Comparsi de
dc.subject.por.fl_str_mv Neural Network
Equalizer
Phase
Concurrent
Blind
topic Neural Network
Equalizer
Phase
Concurrent
Blind
description This paper presents a new complex valued radial basis function (RBF) neural network (NN) with phase transmittance between the input nodes and output, which makes it suitable for channel equalization on quadrature digital modulation systems. The new Phase Transmittance RBFNN (PTRBFNN) differs from the classical complex valued RBFNN in that it does not strictly rely on the Euclidean distance between the input vector and the center vectors, thus enabling the transference of phase information from input to output. In the context of blind channel equalization, results have shown that the PTRBFNN not only solves the phase uncertainty of the classical complex valued RBFNN but also presents a faster convergence rate.comes the abstract of the paper.
publishDate 2007
dc.date.none.fl_str_mv 2007-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002007000100003
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002007000100003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0104-65002007000100003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Computação
publisher.none.fl_str_mv Sociedade Brasileira de Computação
dc.source.none.fl_str_mv Journal of the Brazilian Computer Society v.12 n.4 2007
reponame:Journal of the Brazilian Computer Society
instname:Sociedade Brasileira de Computação (SBC)
instacron:UFRGS
instname_str Sociedade Brasileira de Computação (SBC)
instacron_str UFRGS
institution UFRGS
reponame_str Journal of the Brazilian Computer Society
collection Journal of the Brazilian Computer Society
repository.name.fl_str_mv Journal of the Brazilian Computer Society - Sociedade Brasileira de Computação (SBC)
repository.mail.fl_str_mv jbcs@icmc.sc.usp.br
_version_ 1754734669934362624