Algebraic theory for the clique operator

Detalhes bibliográficos
Autor(a) principal: Gutierrez,Marisa
Data de Publicação: 2001
Outros Autores: Meidanis,João
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Computer Society
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002001000200008
Resumo: In this text we attempt to unify many results about the K operator based on a new theory involving graphs, families and operators. We are able to build an ''operator algebra'' that helps to unify and automate arguments. In addition, we relate well-known properties, such as the Helly property, to the families and the operators. As a result, we deduce many classic results in clique graph theory from the basic fact that CS = I for conformal, reduced families. This includes Hamelink's construction, Roberts and Spencer theorem, and Ban-delt and Prisner's partial characterization of clique-fixed classes [2]. Furthermore, we show the power of our approach proving general results that lead to polynomial recognition of certain graph classes.
id UFRGS-28_a2daf35749a06485e23a5179c5c7d8ea
oai_identifier_str oai:scielo:S0104-65002001000200008
network_acronym_str UFRGS-28
network_name_str Journal of the Brazilian Computer Society
repository_id_str
spelling Algebraic theory for the clique operatorHelly graphsintersection graphsIn this text we attempt to unify many results about the K operator based on a new theory involving graphs, families and operators. We are able to build an ''operator algebra'' that helps to unify and automate arguments. In addition, we relate well-known properties, such as the Helly property, to the families and the operators. As a result, we deduce many classic results in clique graph theory from the basic fact that CS = I for conformal, reduced families. This includes Hamelink's construction, Roberts and Spencer theorem, and Ban-delt and Prisner's partial characterization of clique-fixed classes [2]. Furthermore, we show the power of our approach proving general results that lead to polynomial recognition of certain graph classes.Sociedade Brasileira de Computação2001-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002001000200008Journal of the Brazilian Computer Society v.7 n.3 2001reponame:Journal of the Brazilian Computer Societyinstname:Sociedade Brasileira de Computação (SBC)instacron:UFRGS10.1590/S0104-65002001000200008info:eu-repo/semantics/openAccessGutierrez,MarisaMeidanis,Joãoeng2003-12-16T00:00:00Zoai:scielo:S0104-65002001000200008Revistahttps://journal-bcs.springeropen.com/PUBhttps://old.scielo.br/oai/scielo-oai.phpjbcs@icmc.sc.usp.br1678-48040104-6500opendoar:2003-12-16T00:00Journal of the Brazilian Computer Society - Sociedade Brasileira de Computação (SBC)false
dc.title.none.fl_str_mv Algebraic theory for the clique operator
title Algebraic theory for the clique operator
spellingShingle Algebraic theory for the clique operator
Gutierrez,Marisa
Helly graphs
intersection graphs
title_short Algebraic theory for the clique operator
title_full Algebraic theory for the clique operator
title_fullStr Algebraic theory for the clique operator
title_full_unstemmed Algebraic theory for the clique operator
title_sort Algebraic theory for the clique operator
author Gutierrez,Marisa
author_facet Gutierrez,Marisa
Meidanis,João
author_role author
author2 Meidanis,João
author2_role author
dc.contributor.author.fl_str_mv Gutierrez,Marisa
Meidanis,João
dc.subject.por.fl_str_mv Helly graphs
intersection graphs
topic Helly graphs
intersection graphs
description In this text we attempt to unify many results about the K operator based on a new theory involving graphs, families and operators. We are able to build an ''operator algebra'' that helps to unify and automate arguments. In addition, we relate well-known properties, such as the Helly property, to the families and the operators. As a result, we deduce many classic results in clique graph theory from the basic fact that CS = I for conformal, reduced families. This includes Hamelink's construction, Roberts and Spencer theorem, and Ban-delt and Prisner's partial characterization of clique-fixed classes [2]. Furthermore, we show the power of our approach proving general results that lead to polynomial recognition of certain graph classes.
publishDate 2001
dc.date.none.fl_str_mv 2001-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002001000200008
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002001000200008
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0104-65002001000200008
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Computação
publisher.none.fl_str_mv Sociedade Brasileira de Computação
dc.source.none.fl_str_mv Journal of the Brazilian Computer Society v.7 n.3 2001
reponame:Journal of the Brazilian Computer Society
instname:Sociedade Brasileira de Computação (SBC)
instacron:UFRGS
instname_str Sociedade Brasileira de Computação (SBC)
instacron_str UFRGS
institution UFRGS
reponame_str Journal of the Brazilian Computer Society
collection Journal of the Brazilian Computer Society
repository.name.fl_str_mv Journal of the Brazilian Computer Society - Sociedade Brasileira de Computação (SBC)
repository.mail.fl_str_mv jbcs@icmc.sc.usp.br
_version_ 1754734669566312449