Independent learners in abstract traffic scenarios
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/229327 |
Resumo: | In transportation systems, drivers usually choose their routes in an uncoordinated way. In general, this leads to poor global and individual performance regarding travel times and road network load balance. This work presents a reinforcement learning based approach for route choice which relies solely on drivers’ experience to guide their decisions. There is no coordinated learning mechanism, thus driver agents are independent learners. Our approach is tested in two abstract traffic scenarios and it is compared to other route choice methods. Experimental results show that drivers learn routes in complex scenarios. Moreover, the approach outperforms the compared route choice methods regarding drivers’ travel time. Also, satisfactory performance is achieved regarding road network load balance. The simplicity, realistic assumptions and performance of the proposed approach suggest that it is a feasible candidate for implementation in navigation systems for guiding drivers decisions regarding route choice. |
id |
UFRGS-2_0015cd45951be70a5072b81bf8539cd1 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/229327 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Tavares, Anderson RochaBazzan, Ana Lucia Cetertich2021-09-01T04:26:11Z20120103-4308http://hdl.handle.net/10183/229327000892255In transportation systems, drivers usually choose their routes in an uncoordinated way. In general, this leads to poor global and individual performance regarding travel times and road network load balance. This work presents a reinforcement learning based approach for route choice which relies solely on drivers’ experience to guide their decisions. There is no coordinated learning mechanism, thus driver agents are independent learners. Our approach is tested in two abstract traffic scenarios and it is compared to other route choice methods. Experimental results show that drivers learn routes in complex scenarios. Moreover, the approach outperforms the compared route choice methods regarding drivers’ travel time. Also, satisfactory performance is achieved regarding road network load balance. The simplicity, realistic assumptions and performance of the proposed approach suggest that it is a feasible candidate for implementation in navigation systems for guiding drivers decisions regarding route choice.application/pdfengRevista de informática teórica e aplicada. Porto Alegre. Vol. 19, n. 2 (2012), p. 13-33Inteligência artificialSistemas multiagentesInformatica : TransportesIndependent learners in abstract traffic scenariosinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000892255.pdf.txt000892255.pdf.txtExtracted Texttext/plain42717http://www.lume.ufrgs.br/bitstream/10183/229327/2/000892255.pdf.txt0ca643db5b159610182f0f448ebc3a2bMD52ORIGINAL000892255.pdfTexto completo (inglês)application/pdf393422http://www.lume.ufrgs.br/bitstream/10183/229327/1/000892255.pdf3a947b6b56795d5a81c76822b0d198b4MD5110183/2293272021-09-19 04:32:39.018607oai:www.lume.ufrgs.br:10183/229327Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-09-19T07:32:39Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Independent learners in abstract traffic scenarios |
title |
Independent learners in abstract traffic scenarios |
spellingShingle |
Independent learners in abstract traffic scenarios Tavares, Anderson Rocha Inteligência artificial Sistemas multiagentes Informatica : Transportes |
title_short |
Independent learners in abstract traffic scenarios |
title_full |
Independent learners in abstract traffic scenarios |
title_fullStr |
Independent learners in abstract traffic scenarios |
title_full_unstemmed |
Independent learners in abstract traffic scenarios |
title_sort |
Independent learners in abstract traffic scenarios |
author |
Tavares, Anderson Rocha |
author_facet |
Tavares, Anderson Rocha Bazzan, Ana Lucia Cetertich |
author_role |
author |
author2 |
Bazzan, Ana Lucia Cetertich |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Tavares, Anderson Rocha Bazzan, Ana Lucia Cetertich |
dc.subject.por.fl_str_mv |
Inteligência artificial Sistemas multiagentes Informatica : Transportes |
topic |
Inteligência artificial Sistemas multiagentes Informatica : Transportes |
description |
In transportation systems, drivers usually choose their routes in an uncoordinated way. In general, this leads to poor global and individual performance regarding travel times and road network load balance. This work presents a reinforcement learning based approach for route choice which relies solely on drivers’ experience to guide their decisions. There is no coordinated learning mechanism, thus driver agents are independent learners. Our approach is tested in two abstract traffic scenarios and it is compared to other route choice methods. Experimental results show that drivers learn routes in complex scenarios. Moreover, the approach outperforms the compared route choice methods regarding drivers’ travel time. Also, satisfactory performance is achieved regarding road network load balance. The simplicity, realistic assumptions and performance of the proposed approach suggest that it is a feasible candidate for implementation in navigation systems for guiding drivers decisions regarding route choice. |
publishDate |
2012 |
dc.date.issued.fl_str_mv |
2012 |
dc.date.accessioned.fl_str_mv |
2021-09-01T04:26:11Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/229327 |
dc.identifier.issn.pt_BR.fl_str_mv |
0103-4308 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000892255 |
identifier_str_mv |
0103-4308 000892255 |
url |
http://hdl.handle.net/10183/229327 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Revista de informática teórica e aplicada. Porto Alegre. Vol. 19, n. 2 (2012), p. 13-33 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/229327/2/000892255.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/229327/1/000892255.pdf |
bitstream.checksum.fl_str_mv |
0ca643db5b159610182f0f448ebc3a2b 3a947b6b56795d5a81c76822b0d198b4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447765385216000 |