Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/101874 |
Resumo: | The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature β. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q=1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q ≠ 1, we showthat suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements. |
id |
UFRGS-2_04029e74e46cea91aede08316cb96f97 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/101874 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Silva, Roberto daFelício, José Roberto Drugovich deMartinez, Alexandre Souto2014-08-26T09:26:37Z20121539-3755http://hdl.handle.net/10183/101874000859917The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature β. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q=1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q ≠ 1, we showthat suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 85, no. 6 (June 2012), 066707, 9 p.Mecânica estatísticaAnálise numéricaEquação de BoltzmannEnergia livreEquacao masterMétodo de Monte CarloSistemas de spinGeneralized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systemsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000859917.pdf.txt000859917.pdf.txtExtracted Texttext/plain44524http://www.lume.ufrgs.br/bitstream/10183/101874/2/000859917.pdf.txtaf43364ae1cb19e5e84f758e993351c0MD52ORIGINAL000859917.pdf000859917.pdfTexto completo (inglês)application/pdf1200598http://www.lume.ufrgs.br/bitstream/10183/101874/1/000859917.pdf1ceb32321b229d5de46bc9911531bef1MD51THUMBNAIL000859917.pdf.jpg000859917.pdf.jpgGenerated Thumbnailimage/jpeg2047http://www.lume.ufrgs.br/bitstream/10183/101874/3/000859917.pdf.jpg5b48bdce076f799832909542ef0dffbdMD5310183/1018742018-10-22 09:30:18.587oai:www.lume.ufrgs.br:10183/101874Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-10-22T12:30:18Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems |
title |
Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems |
spellingShingle |
Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems Silva, Roberto da Mecânica estatística Análise numérica Equação de Boltzmann Energia livre Equacao master Método de Monte Carlo Sistemas de spin |
title_short |
Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems |
title_full |
Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems |
title_fullStr |
Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems |
title_full_unstemmed |
Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems |
title_sort |
Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems |
author |
Silva, Roberto da |
author_facet |
Silva, Roberto da Felício, José Roberto Drugovich de Martinez, Alexandre Souto |
author_role |
author |
author2 |
Felício, José Roberto Drugovich de Martinez, Alexandre Souto |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Silva, Roberto da Felício, José Roberto Drugovich de Martinez, Alexandre Souto |
dc.subject.por.fl_str_mv |
Mecânica estatística Análise numérica Equação de Boltzmann Energia livre Equacao master Método de Monte Carlo Sistemas de spin |
topic |
Mecânica estatística Análise numérica Equação de Boltzmann Energia livre Equacao master Método de Monte Carlo Sistemas de spin |
description |
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature β. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q=1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q ≠ 1, we showthat suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements. |
publishDate |
2012 |
dc.date.issued.fl_str_mv |
2012 |
dc.date.accessioned.fl_str_mv |
2014-08-26T09:26:37Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/101874 |
dc.identifier.issn.pt_BR.fl_str_mv |
1539-3755 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000859917 |
identifier_str_mv |
1539-3755 000859917 |
url |
http://hdl.handle.net/10183/101874 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 85, no. 6 (June 2012), 066707, 9 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/101874/2/000859917.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/101874/1/000859917.pdf http://www.lume.ufrgs.br/bitstream/10183/101874/3/000859917.pdf.jpg |
bitstream.checksum.fl_str_mv |
af43364ae1cb19e5e84f758e993351c0 1ceb32321b229d5de46bc9911531bef1 5b48bdce076f799832909542ef0dffbd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447556201644032 |