Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems

Detalhes bibliográficos
Autor(a) principal: Silva, Roberto da
Data de Publicação: 2012
Outros Autores: Felício, José Roberto Drugovich de, Martinez, Alexandre Souto
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/101874
Resumo: The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature β. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q=1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q ≠ 1, we showthat suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
id UFRGS-2_04029e74e46cea91aede08316cb96f97
oai_identifier_str oai:www.lume.ufrgs.br:10183/101874
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Silva, Roberto daFelício, José Roberto Drugovich deMartinez, Alexandre Souto2014-08-26T09:26:37Z20121539-3755http://hdl.handle.net/10183/101874000859917The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature β. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q=1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q ≠ 1, we showthat suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 85, no. 6 (June 2012), 066707, 9 p.Mecânica estatísticaAnálise numéricaEquação de BoltzmannEnergia livreEquacao masterMétodo de Monte CarloSistemas de spinGeneralized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systemsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000859917.pdf.txt000859917.pdf.txtExtracted Texttext/plain44524http://www.lume.ufrgs.br/bitstream/10183/101874/2/000859917.pdf.txtaf43364ae1cb19e5e84f758e993351c0MD52ORIGINAL000859917.pdf000859917.pdfTexto completo (inglês)application/pdf1200598http://www.lume.ufrgs.br/bitstream/10183/101874/1/000859917.pdf1ceb32321b229d5de46bc9911531bef1MD51THUMBNAIL000859917.pdf.jpg000859917.pdf.jpgGenerated Thumbnailimage/jpeg2047http://www.lume.ufrgs.br/bitstream/10183/101874/3/000859917.pdf.jpg5b48bdce076f799832909542ef0dffbdMD5310183/1018742018-10-22 09:30:18.587oai:www.lume.ufrgs.br:10183/101874Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-10-22T12:30:18Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems
title Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems
spellingShingle Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems
Silva, Roberto da
Mecânica estatística
Análise numérica
Equação de Boltzmann
Energia livre
Equacao master
Método de Monte Carlo
Sistemas de spin
title_short Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems
title_full Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems
title_fullStr Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems
title_full_unstemmed Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems
title_sort Generalized Metropolis dynamics with a generalized master equation : an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems
author Silva, Roberto da
author_facet Silva, Roberto da
Felício, José Roberto Drugovich de
Martinez, Alexandre Souto
author_role author
author2 Felício, José Roberto Drugovich de
Martinez, Alexandre Souto
author2_role author
author
dc.contributor.author.fl_str_mv Silva, Roberto da
Felício, José Roberto Drugovich de
Martinez, Alexandre Souto
dc.subject.por.fl_str_mv Mecânica estatística
Análise numérica
Equação de Boltzmann
Energia livre
Equacao master
Método de Monte Carlo
Sistemas de spin
topic Mecânica estatística
Análise numérica
Equação de Boltzmann
Energia livre
Equacao master
Método de Monte Carlo
Sistemas de spin
description The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature β. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q=1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q ≠ 1, we showthat suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
publishDate 2012
dc.date.issued.fl_str_mv 2012
dc.date.accessioned.fl_str_mv 2014-08-26T09:26:37Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/101874
dc.identifier.issn.pt_BR.fl_str_mv 1539-3755
dc.identifier.nrb.pt_BR.fl_str_mv 000859917
identifier_str_mv 1539-3755
000859917
url http://hdl.handle.net/10183/101874
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 85, no. 6 (June 2012), 066707, 9 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/101874/2/000859917.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/101874/1/000859917.pdf
http://www.lume.ufrgs.br/bitstream/10183/101874/3/000859917.pdf.jpg
bitstream.checksum.fl_str_mv af43364ae1cb19e5e84f758e993351c0
1ceb32321b229d5de46bc9911531bef1
5b48bdce076f799832909542ef0dffbd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447556201644032