Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/170029 |
Resumo: | In this work we present an efficient Galerkin least squares finite element scheme to simulate the Burgers’ equation on the whole real line and subjected to initial conditions with compact support. The numerical simulations are performed by considering a sequence of auxiliary spatially dimensionless Dirichlet’s problems parameterized by its numerical support ˜K . Gaining advantage from the well-known convective-diffusive effects of the Burgers’ equation, computations start by choosing ˜K so it contains the support of the initial condition and, as solution diffuses out, ˜K is increased appropriately. By direct comparisons between numerical and analytic solutions and its asymptotic behavior, we conclude that the proposed scheme is accurate even for large times, and it can be applied to numerically investigate properties of this and similar equations on unbounded domains. |
id |
UFRGS-2_05d2a9ada584e23e82aa3ae66bcfa371 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/170029 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Konzen, Pedro Henrique de AlmeidaAzevedo, Fabio Souto deSauter, EsequiaZingano, Paulo Ricardo de Avila2017-11-04T02:30:54Z20171677-1966http://hdl.handle.net/10183/170029001048095In this work we present an efficient Galerkin least squares finite element scheme to simulate the Burgers’ equation on the whole real line and subjected to initial conditions with compact support. The numerical simulations are performed by considering a sequence of auxiliary spatially dimensionless Dirichlet’s problems parameterized by its numerical support ˜K . Gaining advantage from the well-known convective-diffusive effects of the Burgers’ equation, computations start by choosing ˜K so it contains the support of the initial condition and, as solution diffuses out, ˜K is increased appropriately. By direct comparisons between numerical and analytic solutions and its asymptotic behavior, we conclude that the proposed scheme is accurate even for large times, and it can be applied to numerically investigate properties of this and similar equations on unbounded domains.application/pdfporTEMA : tendências em matemática aplicada e computacional. São Carlos. Vol. 18, n. 2 (2017), p. 287-304Equação de BurgerMetodo de GalerkinPropriedades assintóticasBurgers’ equation on the real lineGalerkin least squares finite element methodAsymptotic propertiesNumerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real lineinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001048095.pdf001048095.pdfTexto completo (inglês)application/pdf625953http://www.lume.ufrgs.br/bitstream/10183/170029/1/001048095.pdfbe2528cecf651286c77a53602871ea0eMD51TEXT001048095.pdf.txt001048095.pdf.txtExtracted Texttext/plain43989http://www.lume.ufrgs.br/bitstream/10183/170029/2/001048095.pdf.txt0716fc62ccc9a607bbb97e1b14072b35MD52THUMBNAIL001048095.pdf.jpg001048095.pdf.jpgGenerated Thumbnailimage/jpeg1609http://www.lume.ufrgs.br/bitstream/10183/170029/3/001048095.pdf.jpgf3d14150996fe9eaaf5e4ff73ac836b9MD5310183/1700292018-10-30 08:06:08.774oai:www.lume.ufrgs.br:10183/170029Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-10-30T11:06:08Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line |
title |
Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line |
spellingShingle |
Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line Konzen, Pedro Henrique de Almeida Equação de Burger Metodo de Galerkin Propriedades assintóticas Burgers’ equation on the real line Galerkin least squares finite element method Asymptotic properties |
title_short |
Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line |
title_full |
Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line |
title_fullStr |
Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line |
title_full_unstemmed |
Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line |
title_sort |
Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line |
author |
Konzen, Pedro Henrique de Almeida |
author_facet |
Konzen, Pedro Henrique de Almeida Azevedo, Fabio Souto de Sauter, Esequia Zingano, Paulo Ricardo de Avila |
author_role |
author |
author2 |
Azevedo, Fabio Souto de Sauter, Esequia Zingano, Paulo Ricardo de Avila |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Konzen, Pedro Henrique de Almeida Azevedo, Fabio Souto de Sauter, Esequia Zingano, Paulo Ricardo de Avila |
dc.subject.por.fl_str_mv |
Equação de Burger Metodo de Galerkin Propriedades assintóticas |
topic |
Equação de Burger Metodo de Galerkin Propriedades assintóticas Burgers’ equation on the real line Galerkin least squares finite element method Asymptotic properties |
dc.subject.eng.fl_str_mv |
Burgers’ equation on the real line Galerkin least squares finite element method Asymptotic properties |
description |
In this work we present an efficient Galerkin least squares finite element scheme to simulate the Burgers’ equation on the whole real line and subjected to initial conditions with compact support. The numerical simulations are performed by considering a sequence of auxiliary spatially dimensionless Dirichlet’s problems parameterized by its numerical support ˜K . Gaining advantage from the well-known convective-diffusive effects of the Burgers’ equation, computations start by choosing ˜K so it contains the support of the initial condition and, as solution diffuses out, ˜K is increased appropriately. By direct comparisons between numerical and analytic solutions and its asymptotic behavior, we conclude that the proposed scheme is accurate even for large times, and it can be applied to numerically investigate properties of this and similar equations on unbounded domains. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-11-04T02:30:54Z |
dc.date.issued.fl_str_mv |
2017 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/170029 |
dc.identifier.issn.pt_BR.fl_str_mv |
1677-1966 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001048095 |
identifier_str_mv |
1677-1966 001048095 |
url |
http://hdl.handle.net/10183/170029 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.ispartof.pt_BR.fl_str_mv |
TEMA : tendências em matemática aplicada e computacional. São Carlos. Vol. 18, n. 2 (2017), p. 287-304 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/170029/1/001048095.pdf http://www.lume.ufrgs.br/bitstream/10183/170029/2/001048095.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/170029/3/001048095.pdf.jpg |
bitstream.checksum.fl_str_mv |
be2528cecf651286c77a53602871ea0e 0716fc62ccc9a607bbb97e1b14072b35 f3d14150996fe9eaaf5e4ff73ac836b9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447647844040704 |