Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line

Detalhes bibliográficos
Autor(a) principal: Konzen, Pedro Henrique de Almeida
Data de Publicação: 2017
Outros Autores: Azevedo, Fabio Souto de, Sauter, Esequia, Zingano, Paulo Ricardo de Avila
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/170029
Resumo: In this work we present an efficient Galerkin least squares finite element scheme to simulate the Burgers’ equation on the whole real line and subjected to initial conditions with compact support. The numerical simulations are performed by considering a sequence of auxiliary spatially dimensionless Dirichlet’s problems parameterized by its numerical support ˜K . Gaining advantage from the well-known convective-diffusive effects of the Burgers’ equation, computations start by choosing ˜K so it contains the support of the initial condition and, as solution diffuses out, ˜K is increased appropriately. By direct comparisons between numerical and analytic solutions and its asymptotic behavior, we conclude that the proposed scheme is accurate even for large times, and it can be applied to numerically investigate properties of this and similar equations on unbounded domains.
id UFRGS-2_05d2a9ada584e23e82aa3ae66bcfa371
oai_identifier_str oai:www.lume.ufrgs.br:10183/170029
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Konzen, Pedro Henrique de AlmeidaAzevedo, Fabio Souto deSauter, EsequiaZingano, Paulo Ricardo de Avila2017-11-04T02:30:54Z20171677-1966http://hdl.handle.net/10183/170029001048095In this work we present an efficient Galerkin least squares finite element scheme to simulate the Burgers’ equation on the whole real line and subjected to initial conditions with compact support. The numerical simulations are performed by considering a sequence of auxiliary spatially dimensionless Dirichlet’s problems parameterized by its numerical support ˜K . Gaining advantage from the well-known convective-diffusive effects of the Burgers’ equation, computations start by choosing ˜K so it contains the support of the initial condition and, as solution diffuses out, ˜K is increased appropriately. By direct comparisons between numerical and analytic solutions and its asymptotic behavior, we conclude that the proposed scheme is accurate even for large times, and it can be applied to numerically investigate properties of this and similar equations on unbounded domains.application/pdfporTEMA : tendências em matemática aplicada e computacional. São Carlos. Vol. 18, n. 2 (2017), p. 287-304Equação de BurgerMetodo de GalerkinPropriedades assintóticasBurgers’ equation on the real lineGalerkin least squares finite element methodAsymptotic propertiesNumerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real lineinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001048095.pdf001048095.pdfTexto completo (inglês)application/pdf625953http://www.lume.ufrgs.br/bitstream/10183/170029/1/001048095.pdfbe2528cecf651286c77a53602871ea0eMD51TEXT001048095.pdf.txt001048095.pdf.txtExtracted Texttext/plain43989http://www.lume.ufrgs.br/bitstream/10183/170029/2/001048095.pdf.txt0716fc62ccc9a607bbb97e1b14072b35MD52THUMBNAIL001048095.pdf.jpg001048095.pdf.jpgGenerated Thumbnailimage/jpeg1609http://www.lume.ufrgs.br/bitstream/10183/170029/3/001048095.pdf.jpgf3d14150996fe9eaaf5e4ff73ac836b9MD5310183/1700292018-10-30 08:06:08.774oai:www.lume.ufrgs.br:10183/170029Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-10-30T11:06:08Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line
title Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line
spellingShingle Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line
Konzen, Pedro Henrique de Almeida
Equação de Burger
Metodo de Galerkin
Propriedades assintóticas
Burgers’ equation on the real line
Galerkin least squares finite element method
Asymptotic properties
title_short Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line
title_full Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line
title_fullStr Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line
title_full_unstemmed Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line
title_sort Numerical simulations with the Galerkin least squares finite element method for the Burgers' equation on the real line
author Konzen, Pedro Henrique de Almeida
author_facet Konzen, Pedro Henrique de Almeida
Azevedo, Fabio Souto de
Sauter, Esequia
Zingano, Paulo Ricardo de Avila
author_role author
author2 Azevedo, Fabio Souto de
Sauter, Esequia
Zingano, Paulo Ricardo de Avila
author2_role author
author
author
dc.contributor.author.fl_str_mv Konzen, Pedro Henrique de Almeida
Azevedo, Fabio Souto de
Sauter, Esequia
Zingano, Paulo Ricardo de Avila
dc.subject.por.fl_str_mv Equação de Burger
Metodo de Galerkin
Propriedades assintóticas
topic Equação de Burger
Metodo de Galerkin
Propriedades assintóticas
Burgers’ equation on the real line
Galerkin least squares finite element method
Asymptotic properties
dc.subject.eng.fl_str_mv Burgers’ equation on the real line
Galerkin least squares finite element method
Asymptotic properties
description In this work we present an efficient Galerkin least squares finite element scheme to simulate the Burgers’ equation on the whole real line and subjected to initial conditions with compact support. The numerical simulations are performed by considering a sequence of auxiliary spatially dimensionless Dirichlet’s problems parameterized by its numerical support ˜K . Gaining advantage from the well-known convective-diffusive effects of the Burgers’ equation, computations start by choosing ˜K so it contains the support of the initial condition and, as solution diffuses out, ˜K is increased appropriately. By direct comparisons between numerical and analytic solutions and its asymptotic behavior, we conclude that the proposed scheme is accurate even for large times, and it can be applied to numerically investigate properties of this and similar equations on unbounded domains.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-11-04T02:30:54Z
dc.date.issued.fl_str_mv 2017
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/170029
dc.identifier.issn.pt_BR.fl_str_mv 1677-1966
dc.identifier.nrb.pt_BR.fl_str_mv 001048095
identifier_str_mv 1677-1966
001048095
url http://hdl.handle.net/10183/170029
dc.language.iso.fl_str_mv por
language por
dc.relation.ispartof.pt_BR.fl_str_mv TEMA : tendências em matemática aplicada e computacional. São Carlos. Vol. 18, n. 2 (2017), p. 287-304
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/170029/1/001048095.pdf
http://www.lume.ufrgs.br/bitstream/10183/170029/2/001048095.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/170029/3/001048095.pdf.jpg
bitstream.checksum.fl_str_mv be2528cecf651286c77a53602871ea0e
0716fc62ccc9a607bbb97e1b14072b35
f3d14150996fe9eaaf5e4ff73ac836b9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447647844040704