Evolutionary origins of human apoptosis and genome-stability gene networks

Detalhes bibliográficos
Autor(a) principal: Castro, Mauro Antônio Alves
Data de Publicação: 2008
Outros Autores: Dalmolin, Rodrigo Juliani Siqueira, Moreira, Jose Claudio Fonseca, Mombach, Jose Carlos Merino, Almeida, Rita Maria Cunha de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/21551
Resumo: Apoptosis is essential for complex multicellular organisms and its failure is associated with genome instability and cancer. Interactions between apoptosis and genome-maintenance mechanisms have been extensively documented and include transactivation-independent and -dependent functions, in which the tumor-suppressor protein p53 works as a ‘molecular node’ in the DNA-damage response. Although apoptosis and genome stability have been identified as ancient pathways in eukaryote phylogeny, the biological evolution underlying the emergence of an integrated system remains largely unknown. Here, using computational methods, we reconstruct the evolutionary scenario that linked apoptosis with genome stability pathways in a functional human gene/protein association network. We found that the entanglement of DNA repair, chromosome stability and apoptosis gene networks appears with the caspase gene family and the antiapoptotic gene BCL2. Also, several critical nodes that entangle apoptosis and genome stability are cancer genes (e.g. ATM, BRCA1, BRCA2, MLH1, MSH2, MSH6 and TP53), although their orthologs have arisen in different points of evolution. Our results demonstrate how genome stability and apoptosis were co-opted during evolution recruiting genes that merge both systems. We also provide several examples to exploit this evolutionary platform, where we have judiciously extended information on gene essentiality inferred from model organisms to human.
id UFRGS-2_0f9e119ffb3b6176008e6d76fd0fb25f
oai_identifier_str oai:www.lume.ufrgs.br:10183/21551
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Castro, Mauro Antônio AlvesDalmolin, Rodrigo Juliani SiqueiraMoreira, Jose Claudio FonsecaMombach, Jose Carlos MerinoAlmeida, Rita Maria Cunha de2010-05-05T04:15:51Z20080305-1048http://hdl.handle.net/10183/21551000684184Apoptosis is essential for complex multicellular organisms and its failure is associated with genome instability and cancer. Interactions between apoptosis and genome-maintenance mechanisms have been extensively documented and include transactivation-independent and -dependent functions, in which the tumor-suppressor protein p53 works as a ‘molecular node’ in the DNA-damage response. Although apoptosis and genome stability have been identified as ancient pathways in eukaryote phylogeny, the biological evolution underlying the emergence of an integrated system remains largely unknown. Here, using computational methods, we reconstruct the evolutionary scenario that linked apoptosis with genome stability pathways in a functional human gene/protein association network. We found that the entanglement of DNA repair, chromosome stability and apoptosis gene networks appears with the caspase gene family and the antiapoptotic gene BCL2. Also, several critical nodes that entangle apoptosis and genome stability are cancer genes (e.g. ATM, BRCA1, BRCA2, MLH1, MSH2, MSH6 and TP53), although their orthologs have arisen in different points of evolution. Our results demonstrate how genome stability and apoptosis were co-opted during evolution recruiting genes that merge both systems. We also provide several examples to exploit this evolutionary platform, where we have judiciously extended information on gene essentiality inferred from model organisms to human.application/pdfengNucleic acids research. Oxford. Vol. 36, no. 19 (Nov. 2008), p. 6269-6283GenéticaReparação do DNARedes reguladoras de genesNeoplasiasGenes p53Escherichia coliEvolutionary origins of human apoptosis and genome-stability gene networksEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000684184.pdf000684184.pdfTexto completo (inglês)application/pdf1132396http://www.lume.ufrgs.br/bitstream/10183/21551/1/000684184.pdffd12ede0cbef57f345b7b8f4bc3e16b0MD51TEXT000684184.pdf.txt000684184.pdf.txtExtracted Texttext/plain77078http://www.lume.ufrgs.br/bitstream/10183/21551/2/000684184.pdf.txt973b2e6368e0e1407f4c80da05faedc1MD52THUMBNAIL000684184.pdf.jpg000684184.pdf.jpgGenerated Thumbnailimage/jpeg2221http://www.lume.ufrgs.br/bitstream/10183/21551/3/000684184.pdf.jpg6a57839b0f86bedadda44190589b1f1dMD5310183/215512024-03-29 06:19:48.495117oai:www.lume.ufrgs.br:10183/21551Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-03-29T09:19:48Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Evolutionary origins of human apoptosis and genome-stability gene networks
title Evolutionary origins of human apoptosis and genome-stability gene networks
spellingShingle Evolutionary origins of human apoptosis and genome-stability gene networks
Castro, Mauro Antônio Alves
Genética
Reparação do DNA
Redes reguladoras de genes
Neoplasias
Genes p53
Escherichia coli
title_short Evolutionary origins of human apoptosis and genome-stability gene networks
title_full Evolutionary origins of human apoptosis and genome-stability gene networks
title_fullStr Evolutionary origins of human apoptosis and genome-stability gene networks
title_full_unstemmed Evolutionary origins of human apoptosis and genome-stability gene networks
title_sort Evolutionary origins of human apoptosis and genome-stability gene networks
author Castro, Mauro Antônio Alves
author_facet Castro, Mauro Antônio Alves
Dalmolin, Rodrigo Juliani Siqueira
Moreira, Jose Claudio Fonseca
Mombach, Jose Carlos Merino
Almeida, Rita Maria Cunha de
author_role author
author2 Dalmolin, Rodrigo Juliani Siqueira
Moreira, Jose Claudio Fonseca
Mombach, Jose Carlos Merino
Almeida, Rita Maria Cunha de
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Castro, Mauro Antônio Alves
Dalmolin, Rodrigo Juliani Siqueira
Moreira, Jose Claudio Fonseca
Mombach, Jose Carlos Merino
Almeida, Rita Maria Cunha de
dc.subject.por.fl_str_mv Genética
Reparação do DNA
Redes reguladoras de genes
Neoplasias
Genes p53
Escherichia coli
topic Genética
Reparação do DNA
Redes reguladoras de genes
Neoplasias
Genes p53
Escherichia coli
description Apoptosis is essential for complex multicellular organisms and its failure is associated with genome instability and cancer. Interactions between apoptosis and genome-maintenance mechanisms have been extensively documented and include transactivation-independent and -dependent functions, in which the tumor-suppressor protein p53 works as a ‘molecular node’ in the DNA-damage response. Although apoptosis and genome stability have been identified as ancient pathways in eukaryote phylogeny, the biological evolution underlying the emergence of an integrated system remains largely unknown. Here, using computational methods, we reconstruct the evolutionary scenario that linked apoptosis with genome stability pathways in a functional human gene/protein association network. We found that the entanglement of DNA repair, chromosome stability and apoptosis gene networks appears with the caspase gene family and the antiapoptotic gene BCL2. Also, several critical nodes that entangle apoptosis and genome stability are cancer genes (e.g. ATM, BRCA1, BRCA2, MLH1, MSH2, MSH6 and TP53), although their orthologs have arisen in different points of evolution. Our results demonstrate how genome stability and apoptosis were co-opted during evolution recruiting genes that merge both systems. We also provide several examples to exploit this evolutionary platform, where we have judiciously extended information on gene essentiality inferred from model organisms to human.
publishDate 2008
dc.date.issued.fl_str_mv 2008
dc.date.accessioned.fl_str_mv 2010-05-05T04:15:51Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/21551
dc.identifier.issn.pt_BR.fl_str_mv 0305-1048
dc.identifier.nrb.pt_BR.fl_str_mv 000684184
identifier_str_mv 0305-1048
000684184
url http://hdl.handle.net/10183/21551
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Nucleic acids research. Oxford. Vol. 36, no. 19 (Nov. 2008), p. 6269-6283
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/21551/1/000684184.pdf
http://www.lume.ufrgs.br/bitstream/10183/21551/2/000684184.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/21551/3/000684184.pdf.jpg
bitstream.checksum.fl_str_mv fd12ede0cbef57f345b7b8f4bc3e16b0
973b2e6368e0e1407f4c80da05faedc1
6a57839b0f86bedadda44190589b1f1d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1801224711732985856