An interval fixed point theorem
Autor(a) principal: | |
---|---|
Data de Publicação: | 1996 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/256186 |
Resumo: | In this paper we will present an interval version to the Fixed Point Theorem. Such theorem offers a practical method (the 'sucessive ap proximations method') which serves to the interval fixed point equa tion root compute. We will also present a criterion that allows to de fine easily ~theinterval semi-plain regions which can hold such roots. Finally, we will do a practical application, showing in what manner to compute the polynomial interval function fixed points. |
id |
UFRGS-2_1a20c1312bd81b43fc328973878c1ab2 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/256186 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Oliveira, Paulo Werlang deClaudio, Dalcidio Moraes2023-03-22T03:24:51Z19960103-4308http://hdl.handle.net/10183/256186000179532In this paper we will present an interval version to the Fixed Point Theorem. Such theorem offers a practical method (the 'sucessive ap proximations method') which serves to the interval fixed point equa tion root compute. We will also present a criterion that allows to de fine easily ~theinterval semi-plain regions which can hold such roots. Finally, we will do a practical application, showing in what manner to compute the polynomial interval function fixed points.application/pdfengRevista de Informatica Teorica e Aplicada. Porto Alegre. vol. 3, n. 2 (1996), p. 117-131.Analise : IntervalosTeorema : Ponto fixoInterval ArithmeticAn interval fixed point theoreminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000179532.pdf.txt000179532.pdf.txtExtracted Texttext/plain22582http://www.lume.ufrgs.br/bitstream/10183/256186/2/000179532.pdf.txtd0dc8477cfbd76296d2e92688fc387bbMD52ORIGINAL000179532.pdfTexto completoapplication/pdf4368318http://www.lume.ufrgs.br/bitstream/10183/256186/1/000179532.pdfdb0f9f8d81a2abc8c4a0e9481277ac64MD5110183/2561862023-03-23 03:24:43.187536oai:www.lume.ufrgs.br:10183/256186Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-03-23T06:24:43Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
An interval fixed point theorem |
title |
An interval fixed point theorem |
spellingShingle |
An interval fixed point theorem Oliveira, Paulo Werlang de Analise : Intervalos Teorema : Ponto fixo Interval Arithmetic |
title_short |
An interval fixed point theorem |
title_full |
An interval fixed point theorem |
title_fullStr |
An interval fixed point theorem |
title_full_unstemmed |
An interval fixed point theorem |
title_sort |
An interval fixed point theorem |
author |
Oliveira, Paulo Werlang de |
author_facet |
Oliveira, Paulo Werlang de Claudio, Dalcidio Moraes |
author_role |
author |
author2 |
Claudio, Dalcidio Moraes |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Oliveira, Paulo Werlang de Claudio, Dalcidio Moraes |
dc.subject.por.fl_str_mv |
Analise : Intervalos Teorema : Ponto fixo |
topic |
Analise : Intervalos Teorema : Ponto fixo Interval Arithmetic |
dc.subject.eng.fl_str_mv |
Interval Arithmetic |
description |
In this paper we will present an interval version to the Fixed Point Theorem. Such theorem offers a practical method (the 'sucessive ap proximations method') which serves to the interval fixed point equa tion root compute. We will also present a criterion that allows to de fine easily ~theinterval semi-plain regions which can hold such roots. Finally, we will do a practical application, showing in what manner to compute the polynomial interval function fixed points. |
publishDate |
1996 |
dc.date.issued.fl_str_mv |
1996 |
dc.date.accessioned.fl_str_mv |
2023-03-22T03:24:51Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/256186 |
dc.identifier.issn.pt_BR.fl_str_mv |
0103-4308 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000179532 |
identifier_str_mv |
0103-4308 000179532 |
url |
http://hdl.handle.net/10183/256186 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Revista de Informatica Teorica e Aplicada. Porto Alegre. vol. 3, n. 2 (1996), p. 117-131. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/256186/2/000179532.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/256186/1/000179532.pdf |
bitstream.checksum.fl_str_mv |
d0dc8477cfbd76296d2e92688fc387bb db0f9f8d81a2abc8c4a0e9481277ac64 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1801225084170403840 |