An interval fixed point theorem

Detalhes bibliográficos
Autor(a) principal: Oliveira, Paulo Werlang de
Data de Publicação: 1996
Outros Autores: Claudio, Dalcidio Moraes
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/256186
Resumo: In this paper we will present an interval version to the Fixed Point Theorem. Such theorem offers a practical method (the 'sucessive ap proximations method') which serves to the interval fixed point equa tion root compute. We will also present a criterion that allows to de fine easily ~theinterval semi-plain regions which can hold such roots. Finally, we will do a practical application, showing in what manner to compute the polynomial interval function fixed points.
id UFRGS-2_1a20c1312bd81b43fc328973878c1ab2
oai_identifier_str oai:www.lume.ufrgs.br:10183/256186
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Oliveira, Paulo Werlang deClaudio, Dalcidio Moraes2023-03-22T03:24:51Z19960103-4308http://hdl.handle.net/10183/256186000179532In this paper we will present an interval version to the Fixed Point Theorem. Such theorem offers a practical method (the 'sucessive ap proximations method') which serves to the interval fixed point equa tion root compute. We will also present a criterion that allows to de fine easily ~theinterval semi-plain regions which can hold such roots. Finally, we will do a practical application, showing in what manner to compute the polynomial interval function fixed points.application/pdfengRevista de Informatica Teorica e Aplicada. Porto Alegre. vol. 3, n. 2 (1996), p. 117-131.Analise : IntervalosTeorema : Ponto fixoInterval ArithmeticAn interval fixed point theoreminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000179532.pdf.txt000179532.pdf.txtExtracted Texttext/plain22582http://www.lume.ufrgs.br/bitstream/10183/256186/2/000179532.pdf.txtd0dc8477cfbd76296d2e92688fc387bbMD52ORIGINAL000179532.pdfTexto completoapplication/pdf4368318http://www.lume.ufrgs.br/bitstream/10183/256186/1/000179532.pdfdb0f9f8d81a2abc8c4a0e9481277ac64MD5110183/2561862023-03-23 03:24:43.187536oai:www.lume.ufrgs.br:10183/256186Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-03-23T06:24:43Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv An interval fixed point theorem
title An interval fixed point theorem
spellingShingle An interval fixed point theorem
Oliveira, Paulo Werlang de
Analise : Intervalos
Teorema : Ponto fixo
Interval Arithmetic
title_short An interval fixed point theorem
title_full An interval fixed point theorem
title_fullStr An interval fixed point theorem
title_full_unstemmed An interval fixed point theorem
title_sort An interval fixed point theorem
author Oliveira, Paulo Werlang de
author_facet Oliveira, Paulo Werlang de
Claudio, Dalcidio Moraes
author_role author
author2 Claudio, Dalcidio Moraes
author2_role author
dc.contributor.author.fl_str_mv Oliveira, Paulo Werlang de
Claudio, Dalcidio Moraes
dc.subject.por.fl_str_mv Analise : Intervalos
Teorema : Ponto fixo
topic Analise : Intervalos
Teorema : Ponto fixo
Interval Arithmetic
dc.subject.eng.fl_str_mv Interval Arithmetic
description In this paper we will present an interval version to the Fixed Point Theorem. Such theorem offers a practical method (the 'sucessive ap proximations method') which serves to the interval fixed point equa tion root compute. We will also present a criterion that allows to de fine easily ~theinterval semi-plain regions which can hold such roots. Finally, we will do a practical application, showing in what manner to compute the polynomial interval function fixed points.
publishDate 1996
dc.date.issued.fl_str_mv 1996
dc.date.accessioned.fl_str_mv 2023-03-22T03:24:51Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/256186
dc.identifier.issn.pt_BR.fl_str_mv 0103-4308
dc.identifier.nrb.pt_BR.fl_str_mv 000179532
identifier_str_mv 0103-4308
000179532
url http://hdl.handle.net/10183/256186
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Revista de Informatica Teorica e Aplicada. Porto Alegre. vol. 3, n. 2 (1996), p. 117-131.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/256186/2/000179532.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/256186/1/000179532.pdf
bitstream.checksum.fl_str_mv d0dc8477cfbd76296d2e92688fc387bb
db0f9f8d81a2abc8c4a0e9481277ac64
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1801225084170403840