Application of multivariate analysis on digital images of Cannabis Sativa L extracts

Detalhes bibliográficos
Autor(a) principal: Duarte, Jonathaline Apollo
Data de Publicação: 2020
Outros Autores: González, Marina, Gorziza, Roberta Petry, Büttenbender, Sabrina Laíz, Ramos, Mariana Fernandes, Caffarate, Luiza Manica, Santos, Leonardo Correa Venturini dos, Camargo, Flavio Anastacio de Oliveira, Ferrão, Marco Flôres, Limberger, Renata Pereira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/280935
Resumo: Cannabis sativa L is one of the most used drugs in the world. Information about the plant’s age and storage can help forensic scientists to identify and to track samples. The ratio between the cannabinoids tetrahydrocannabinol (THC) and cannabinol (CBN) has been related to the degradation of cannabis with time. Thus, this study aimed to test Multivariate Image Analysis (MIA) to evaluate cannabis extracts concerning its colors. Initially, 52 samples of Cannabis sativa L. extracts were analyzed by Gas Chromatography coupled to Flame Ionization Detector (GC/FID) to quantify THC and CBN. Afterwards, the extract samples were photographed and analyzed by two different multivariate analysis tools: ChemoStat®, a free chemometrics software, and PhotoMetrix PRO®, an app for mobile devices. Using exploratory analysis of principal component analysis (PCA) and hierarchical cluster analysis (HCA). It was observed that the more intense the color for an extract, the higher concentration of THC and CBN it has, while the lighter color extracts correspond to samples with no THC. The results suggest to propose a simple method for previous clustering of samples that may precede chromatographic analyzes, assist in chemical profile studies or simply aggregate samples of similar profiles for analyzed together.
id UFRGS-2_1d9584d539d4adeec74303c273335dba
oai_identifier_str oai:www.lume.ufrgs.br:10183/280935
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Duarte, Jonathaline ApolloGonzález, MarinaGorziza, Roberta PetryBüttenbender, Sabrina LaízRamos, Mariana FernandesCaffarate, Luiza ManicaSantos, Leonardo Correa Venturini dosCamargo, Flavio Anastacio de OliveiraFerrão, Marco FlôresLimberger, Renata Pereira2024-11-07T06:52:24Z20202178-0013http://hdl.handle.net/10183/280935001126023Cannabis sativa L is one of the most used drugs in the world. Information about the plant’s age and storage can help forensic scientists to identify and to track samples. The ratio between the cannabinoids tetrahydrocannabinol (THC) and cannabinol (CBN) has been related to the degradation of cannabis with time. Thus, this study aimed to test Multivariate Image Analysis (MIA) to evaluate cannabis extracts concerning its colors. Initially, 52 samples of Cannabis sativa L. extracts were analyzed by Gas Chromatography coupled to Flame Ionization Detector (GC/FID) to quantify THC and CBN. Afterwards, the extract samples were photographed and analyzed by two different multivariate analysis tools: ChemoStat®, a free chemometrics software, and PhotoMetrix PRO®, an app for mobile devices. Using exploratory analysis of principal component analysis (PCA) and hierarchical cluster analysis (HCA). It was observed that the more intense the color for an extract, the higher concentration of THC and CBN it has, while the lighter color extracts correspond to samples with no THC. The results suggest to propose a simple method for previous clustering of samples that may precede chromatographic analyzes, assist in chemical profile studies or simply aggregate samples of similar profiles for analyzed together.application/pdfengRevista Brasileira de Ciências Policiais. Distrito Federal. Vol. 11, n. 3 ( Set./Dez. 2020), p. 25-48Cannabis sativaQuimiometriaCanabinóidesTetra-hidrocanabinolCannabis sativa L.ChemometricsApplication of multivariate analysis on digital images of Cannabis Sativa L extractsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001126023.pdf.txt001126023.pdf.txtExtracted Texttext/plain43934http://www.lume.ufrgs.br/bitstream/10183/280935/2/001126023.pdf.txt3d0d13f9edca01fdc23a3caeb0853b69MD52ORIGINAL001126023.pdfTexto completo (inglês)application/pdf2726872http://www.lume.ufrgs.br/bitstream/10183/280935/1/001126023.pdf7bfe385cc27eff196429b664e47b2128MD5110183/2809352024-11-08 07:52:13.248544oai:www.lume.ufrgs.br:10183/280935Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2024-11-08T09:52:13Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Application of multivariate analysis on digital images of Cannabis Sativa L extracts
title Application of multivariate analysis on digital images of Cannabis Sativa L extracts
spellingShingle Application of multivariate analysis on digital images of Cannabis Sativa L extracts
Duarte, Jonathaline Apollo
Cannabis sativa
Quimiometria
Canabinóides
Tetra-hidrocanabinol
Cannabis sativa L.
Chemometrics
title_short Application of multivariate analysis on digital images of Cannabis Sativa L extracts
title_full Application of multivariate analysis on digital images of Cannabis Sativa L extracts
title_fullStr Application of multivariate analysis on digital images of Cannabis Sativa L extracts
title_full_unstemmed Application of multivariate analysis on digital images of Cannabis Sativa L extracts
title_sort Application of multivariate analysis on digital images of Cannabis Sativa L extracts
author Duarte, Jonathaline Apollo
author_facet Duarte, Jonathaline Apollo
González, Marina
Gorziza, Roberta Petry
Büttenbender, Sabrina Laíz
Ramos, Mariana Fernandes
Caffarate, Luiza Manica
Santos, Leonardo Correa Venturini dos
Camargo, Flavio Anastacio de Oliveira
Ferrão, Marco Flôres
Limberger, Renata Pereira
author_role author
author2 González, Marina
Gorziza, Roberta Petry
Büttenbender, Sabrina Laíz
Ramos, Mariana Fernandes
Caffarate, Luiza Manica
Santos, Leonardo Correa Venturini dos
Camargo, Flavio Anastacio de Oliveira
Ferrão, Marco Flôres
Limberger, Renata Pereira
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Duarte, Jonathaline Apollo
González, Marina
Gorziza, Roberta Petry
Büttenbender, Sabrina Laíz
Ramos, Mariana Fernandes
Caffarate, Luiza Manica
Santos, Leonardo Correa Venturini dos
Camargo, Flavio Anastacio de Oliveira
Ferrão, Marco Flôres
Limberger, Renata Pereira
dc.subject.por.fl_str_mv Cannabis sativa
Quimiometria
Canabinóides
Tetra-hidrocanabinol
topic Cannabis sativa
Quimiometria
Canabinóides
Tetra-hidrocanabinol
Cannabis sativa L.
Chemometrics
dc.subject.eng.fl_str_mv Cannabis sativa L.
Chemometrics
description Cannabis sativa L is one of the most used drugs in the world. Information about the plant’s age and storage can help forensic scientists to identify and to track samples. The ratio between the cannabinoids tetrahydrocannabinol (THC) and cannabinol (CBN) has been related to the degradation of cannabis with time. Thus, this study aimed to test Multivariate Image Analysis (MIA) to evaluate cannabis extracts concerning its colors. Initially, 52 samples of Cannabis sativa L. extracts were analyzed by Gas Chromatography coupled to Flame Ionization Detector (GC/FID) to quantify THC and CBN. Afterwards, the extract samples were photographed and analyzed by two different multivariate analysis tools: ChemoStat®, a free chemometrics software, and PhotoMetrix PRO®, an app for mobile devices. Using exploratory analysis of principal component analysis (PCA) and hierarchical cluster analysis (HCA). It was observed that the more intense the color for an extract, the higher concentration of THC and CBN it has, while the lighter color extracts correspond to samples with no THC. The results suggest to propose a simple method for previous clustering of samples that may precede chromatographic analyzes, assist in chemical profile studies or simply aggregate samples of similar profiles for analyzed together.
publishDate 2020
dc.date.issued.fl_str_mv 2020
dc.date.accessioned.fl_str_mv 2024-11-07T06:52:24Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/280935
dc.identifier.issn.pt_BR.fl_str_mv 2178-0013
dc.identifier.nrb.pt_BR.fl_str_mv 001126023
identifier_str_mv 2178-0013
001126023
url http://hdl.handle.net/10183/280935
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Revista Brasileira de Ciências Policiais. Distrito Federal. Vol. 11, n. 3 ( Set./Dez. 2020), p. 25-48
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/280935/2/001126023.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/280935/1/001126023.pdf
bitstream.checksum.fl_str_mv 3d0d13f9edca01fdc23a3caeb0853b69
7bfe385cc27eff196429b664e47b2128
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br
_version_ 1817725199042215936