Application of multivariate analysis on digital images of Cannabis Sativa L extracts
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/280935 |
Resumo: | Cannabis sativa L is one of the most used drugs in the world. Information about the plant’s age and storage can help forensic scientists to identify and to track samples. The ratio between the cannabinoids tetrahydrocannabinol (THC) and cannabinol (CBN) has been related to the degradation of cannabis with time. Thus, this study aimed to test Multivariate Image Analysis (MIA) to evaluate cannabis extracts concerning its colors. Initially, 52 samples of Cannabis sativa L. extracts were analyzed by Gas Chromatography coupled to Flame Ionization Detector (GC/FID) to quantify THC and CBN. Afterwards, the extract samples were photographed and analyzed by two different multivariate analysis tools: ChemoStat®, a free chemometrics software, and PhotoMetrix PRO®, an app for mobile devices. Using exploratory analysis of principal component analysis (PCA) and hierarchical cluster analysis (HCA). It was observed that the more intense the color for an extract, the higher concentration of THC and CBN it has, while the lighter color extracts correspond to samples with no THC. The results suggest to propose a simple method for previous clustering of samples that may precede chromatographic analyzes, assist in chemical profile studies or simply aggregate samples of similar profiles for analyzed together. |
id |
UFRGS-2_1d9584d539d4adeec74303c273335dba |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/280935 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Duarte, Jonathaline ApolloGonzález, MarinaGorziza, Roberta PetryBüttenbender, Sabrina LaízRamos, Mariana FernandesCaffarate, Luiza ManicaSantos, Leonardo Correa Venturini dosCamargo, Flavio Anastacio de OliveiraFerrão, Marco FlôresLimberger, Renata Pereira2024-11-07T06:52:24Z20202178-0013http://hdl.handle.net/10183/280935001126023Cannabis sativa L is one of the most used drugs in the world. Information about the plant’s age and storage can help forensic scientists to identify and to track samples. The ratio between the cannabinoids tetrahydrocannabinol (THC) and cannabinol (CBN) has been related to the degradation of cannabis with time. Thus, this study aimed to test Multivariate Image Analysis (MIA) to evaluate cannabis extracts concerning its colors. Initially, 52 samples of Cannabis sativa L. extracts were analyzed by Gas Chromatography coupled to Flame Ionization Detector (GC/FID) to quantify THC and CBN. Afterwards, the extract samples were photographed and analyzed by two different multivariate analysis tools: ChemoStat®, a free chemometrics software, and PhotoMetrix PRO®, an app for mobile devices. Using exploratory analysis of principal component analysis (PCA) and hierarchical cluster analysis (HCA). It was observed that the more intense the color for an extract, the higher concentration of THC and CBN it has, while the lighter color extracts correspond to samples with no THC. The results suggest to propose a simple method for previous clustering of samples that may precede chromatographic analyzes, assist in chemical profile studies or simply aggregate samples of similar profiles for analyzed together.application/pdfengRevista Brasileira de Ciências Policiais. Distrito Federal. Vol. 11, n. 3 ( Set./Dez. 2020), p. 25-48Cannabis sativaQuimiometriaCanabinóidesTetra-hidrocanabinolCannabis sativa L.ChemometricsApplication of multivariate analysis on digital images of Cannabis Sativa L extractsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001126023.pdf.txt001126023.pdf.txtExtracted Texttext/plain43934http://www.lume.ufrgs.br/bitstream/10183/280935/2/001126023.pdf.txt3d0d13f9edca01fdc23a3caeb0853b69MD52ORIGINAL001126023.pdfTexto completo (inglês)application/pdf2726872http://www.lume.ufrgs.br/bitstream/10183/280935/1/001126023.pdf7bfe385cc27eff196429b664e47b2128MD5110183/2809352024-11-08 07:52:13.248544oai:www.lume.ufrgs.br:10183/280935Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2024-11-08T09:52:13Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Application of multivariate analysis on digital images of Cannabis Sativa L extracts |
title |
Application of multivariate analysis on digital images of Cannabis Sativa L extracts |
spellingShingle |
Application of multivariate analysis on digital images of Cannabis Sativa L extracts Duarte, Jonathaline Apollo Cannabis sativa Quimiometria Canabinóides Tetra-hidrocanabinol Cannabis sativa L. Chemometrics |
title_short |
Application of multivariate analysis on digital images of Cannabis Sativa L extracts |
title_full |
Application of multivariate analysis on digital images of Cannabis Sativa L extracts |
title_fullStr |
Application of multivariate analysis on digital images of Cannabis Sativa L extracts |
title_full_unstemmed |
Application of multivariate analysis on digital images of Cannabis Sativa L extracts |
title_sort |
Application of multivariate analysis on digital images of Cannabis Sativa L extracts |
author |
Duarte, Jonathaline Apollo |
author_facet |
Duarte, Jonathaline Apollo González, Marina Gorziza, Roberta Petry Büttenbender, Sabrina Laíz Ramos, Mariana Fernandes Caffarate, Luiza Manica Santos, Leonardo Correa Venturini dos Camargo, Flavio Anastacio de Oliveira Ferrão, Marco Flôres Limberger, Renata Pereira |
author_role |
author |
author2 |
González, Marina Gorziza, Roberta Petry Büttenbender, Sabrina Laíz Ramos, Mariana Fernandes Caffarate, Luiza Manica Santos, Leonardo Correa Venturini dos Camargo, Flavio Anastacio de Oliveira Ferrão, Marco Flôres Limberger, Renata Pereira |
author2_role |
author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Duarte, Jonathaline Apollo González, Marina Gorziza, Roberta Petry Büttenbender, Sabrina Laíz Ramos, Mariana Fernandes Caffarate, Luiza Manica Santos, Leonardo Correa Venturini dos Camargo, Flavio Anastacio de Oliveira Ferrão, Marco Flôres Limberger, Renata Pereira |
dc.subject.por.fl_str_mv |
Cannabis sativa Quimiometria Canabinóides Tetra-hidrocanabinol |
topic |
Cannabis sativa Quimiometria Canabinóides Tetra-hidrocanabinol Cannabis sativa L. Chemometrics |
dc.subject.eng.fl_str_mv |
Cannabis sativa L. Chemometrics |
description |
Cannabis sativa L is one of the most used drugs in the world. Information about the plant’s age and storage can help forensic scientists to identify and to track samples. The ratio between the cannabinoids tetrahydrocannabinol (THC) and cannabinol (CBN) has been related to the degradation of cannabis with time. Thus, this study aimed to test Multivariate Image Analysis (MIA) to evaluate cannabis extracts concerning its colors. Initially, 52 samples of Cannabis sativa L. extracts were analyzed by Gas Chromatography coupled to Flame Ionization Detector (GC/FID) to quantify THC and CBN. Afterwards, the extract samples were photographed and analyzed by two different multivariate analysis tools: ChemoStat®, a free chemometrics software, and PhotoMetrix PRO®, an app for mobile devices. Using exploratory analysis of principal component analysis (PCA) and hierarchical cluster analysis (HCA). It was observed that the more intense the color for an extract, the higher concentration of THC and CBN it has, while the lighter color extracts correspond to samples with no THC. The results suggest to propose a simple method for previous clustering of samples that may precede chromatographic analyzes, assist in chemical profile studies or simply aggregate samples of similar profiles for analyzed together. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020 |
dc.date.accessioned.fl_str_mv |
2024-11-07T06:52:24Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/280935 |
dc.identifier.issn.pt_BR.fl_str_mv |
2178-0013 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001126023 |
identifier_str_mv |
2178-0013 001126023 |
url |
http://hdl.handle.net/10183/280935 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Revista Brasileira de Ciências Policiais. Distrito Federal. Vol. 11, n. 3 ( Set./Dez. 2020), p. 25-48 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/280935/2/001126023.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/280935/1/001126023.pdf |
bitstream.checksum.fl_str_mv |
3d0d13f9edca01fdc23a3caeb0853b69 7bfe385cc27eff196429b664e47b2128 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br |
_version_ |
1817725199042215936 |