Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/229971 |
Resumo: | This paper presents a study of the complex step differentiation method applied to a parameter sensitivity analysis for 3D elastic contact problem. The analysis is performed with the Boundary Element Method (BEM) using discontinuous elements and the Generalized Newton Method with line search (GNMls). A standard BEM implementation is used and the contact restrictions are fulfilled through the augmented Lagrangian method. This methodology in conjunction with the BEM avoids the calculation of the nonlinear derivatives during the solution process, allowing a fast and reliable solution procedure. The parameter sensitivity is evaluated using complex-step differentiation. This well-known method approximates the derivative of a function analogously to the standard finite differences method, with the advantages of being numerically exact and nearly insensitive to the step-size. As an example, a Hertz-type problem is solved and the sensitivity of the contact pressures with respect to the Young Modulus variation is evaluated. The obtained results are compared with analytical and numerical solutions found in the literature. |
id |
UFRGS-2_2d52cb7ae2175c2dbee8f884f03ff8d9 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/229971 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Ubessi, Cristiano João BrizziMarczak, Rogerio Jose2021-09-22T04:23:22Z20181679-7825http://hdl.handle.net/10183/229971001131581This paper presents a study of the complex step differentiation method applied to a parameter sensitivity analysis for 3D elastic contact problem. The analysis is performed with the Boundary Element Method (BEM) using discontinuous elements and the Generalized Newton Method with line search (GNMls). A standard BEM implementation is used and the contact restrictions are fulfilled through the augmented Lagrangian method. This methodology in conjunction with the BEM avoids the calculation of the nonlinear derivatives during the solution process, allowing a fast and reliable solution procedure. The parameter sensitivity is evaluated using complex-step differentiation. This well-known method approximates the derivative of a function analogously to the standard finite differences method, with the advantages of being numerically exact and nearly insensitive to the step-size. As an example, a Hertz-type problem is solved and the sensitivity of the contact pressures with respect to the Young Modulus variation is evaluated. The obtained results are compared with analytical and numerical solutions found in the literature.application/pdfengLatin American Journal of Solids and Structures [recurso eletrônico]. Rio de Janeiro, RJ. Vol. 15, no. 10 (2018), Art. e76, 17 p.FricçãoElementos de contornoBoundary element methodFrictional contactComplex step methodSensitivity analysis of 3D frictional contact with BEM using complex-step differentiationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001131581.pdf.txt001131581.pdf.txtExtracted Texttext/plain46230http://www.lume.ufrgs.br/bitstream/10183/229971/2/001131581.pdf.txtba25c3037cf7c8939d38e6f07ea1759dMD52ORIGINAL001131581.pdfTexto completo (inglês)application/pdf1406967http://www.lume.ufrgs.br/bitstream/10183/229971/1/001131581.pdf82a9c3b44f51c70ef4aec283b19b44e6MD5110183/2299712021-11-20 05:43:24.714656oai:www.lume.ufrgs.br:10183/229971Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-11-20T07:43:24Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation |
title |
Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation |
spellingShingle |
Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation Ubessi, Cristiano João Brizzi Fricção Elementos de contorno Boundary element method Frictional contact Complex step method |
title_short |
Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation |
title_full |
Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation |
title_fullStr |
Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation |
title_full_unstemmed |
Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation |
title_sort |
Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation |
author |
Ubessi, Cristiano João Brizzi |
author_facet |
Ubessi, Cristiano João Brizzi Marczak, Rogerio Jose |
author_role |
author |
author2 |
Marczak, Rogerio Jose |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Ubessi, Cristiano João Brizzi Marczak, Rogerio Jose |
dc.subject.por.fl_str_mv |
Fricção Elementos de contorno |
topic |
Fricção Elementos de contorno Boundary element method Frictional contact Complex step method |
dc.subject.eng.fl_str_mv |
Boundary element method Frictional contact Complex step method |
description |
This paper presents a study of the complex step differentiation method applied to a parameter sensitivity analysis for 3D elastic contact problem. The analysis is performed with the Boundary Element Method (BEM) using discontinuous elements and the Generalized Newton Method with line search (GNMls). A standard BEM implementation is used and the contact restrictions are fulfilled through the augmented Lagrangian method. This methodology in conjunction with the BEM avoids the calculation of the nonlinear derivatives during the solution process, allowing a fast and reliable solution procedure. The parameter sensitivity is evaluated using complex-step differentiation. This well-known method approximates the derivative of a function analogously to the standard finite differences method, with the advantages of being numerically exact and nearly insensitive to the step-size. As an example, a Hertz-type problem is solved and the sensitivity of the contact pressures with respect to the Young Modulus variation is evaluated. The obtained results are compared with analytical and numerical solutions found in the literature. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018 |
dc.date.accessioned.fl_str_mv |
2021-09-22T04:23:22Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/229971 |
dc.identifier.issn.pt_BR.fl_str_mv |
1679-7825 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001131581 |
identifier_str_mv |
1679-7825 001131581 |
url |
http://hdl.handle.net/10183/229971 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Latin American Journal of Solids and Structures [recurso eletrônico]. Rio de Janeiro, RJ. Vol. 15, no. 10 (2018), Art. e76, 17 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/229971/2/001131581.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/229971/1/001131581.pdf |
bitstream.checksum.fl_str_mv |
ba25c3037cf7c8939d38e6f07ea1759d 82a9c3b44f51c70ef4aec283b19b44e6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447767345004544 |