Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation

Detalhes bibliográficos
Autor(a) principal: Ubessi, Cristiano João Brizzi
Data de Publicação: 2018
Outros Autores: Marczak, Rogerio Jose
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/229971
Resumo: This paper presents a study of the complex step differentiation method applied to a parameter sensitivity analysis for 3D elastic contact problem. The analysis is performed with the Boundary Element Method (BEM) using discontinuous elements and the Generalized Newton Method with line search (GNMls). A standard BEM implementation is used and the contact restrictions are fulfilled through the augmented Lagrangian method. This methodology in conjunction with the BEM avoids the calculation of the nonlinear derivatives during the solution process, allowing a fast and reliable solution procedure. The parameter sensitivity is evaluated using complex-step differentiation. This well-known method approximates the derivative of a function analogously to the standard finite differences method, with the advantages of being numerically exact and nearly insensitive to the step-size. As an example, a Hertz-type problem is solved and the sensitivity of the contact pressures with respect to the Young Modulus variation is evaluated. The obtained results are compared with analytical and numerical solutions found in the literature.
id UFRGS-2_2d52cb7ae2175c2dbee8f884f03ff8d9
oai_identifier_str oai:www.lume.ufrgs.br:10183/229971
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Ubessi, Cristiano João BrizziMarczak, Rogerio Jose2021-09-22T04:23:22Z20181679-7825http://hdl.handle.net/10183/229971001131581This paper presents a study of the complex step differentiation method applied to a parameter sensitivity analysis for 3D elastic contact problem. The analysis is performed with the Boundary Element Method (BEM) using discontinuous elements and the Generalized Newton Method with line search (GNMls). A standard BEM implementation is used and the contact restrictions are fulfilled through the augmented Lagrangian method. This methodology in conjunction with the BEM avoids the calculation of the nonlinear derivatives during the solution process, allowing a fast and reliable solution procedure. The parameter sensitivity is evaluated using complex-step differentiation. This well-known method approximates the derivative of a function analogously to the standard finite differences method, with the advantages of being numerically exact and nearly insensitive to the step-size. As an example, a Hertz-type problem is solved and the sensitivity of the contact pressures with respect to the Young Modulus variation is evaluated. The obtained results are compared with analytical and numerical solutions found in the literature.application/pdfengLatin American Journal of Solids and Structures [recurso eletrônico]. Rio de Janeiro, RJ. Vol. 15, no. 10 (2018), Art. e76, 17 p.FricçãoElementos de contornoBoundary element methodFrictional contactComplex step methodSensitivity analysis of 3D frictional contact with BEM using complex-step differentiationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001131581.pdf.txt001131581.pdf.txtExtracted Texttext/plain46230http://www.lume.ufrgs.br/bitstream/10183/229971/2/001131581.pdf.txtba25c3037cf7c8939d38e6f07ea1759dMD52ORIGINAL001131581.pdfTexto completo (inglês)application/pdf1406967http://www.lume.ufrgs.br/bitstream/10183/229971/1/001131581.pdf82a9c3b44f51c70ef4aec283b19b44e6MD5110183/2299712021-11-20 05:43:24.714656oai:www.lume.ufrgs.br:10183/229971Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-11-20T07:43:24Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation
title Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation
spellingShingle Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation
Ubessi, Cristiano João Brizzi
Fricção
Elementos de contorno
Boundary element method
Frictional contact
Complex step method
title_short Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation
title_full Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation
title_fullStr Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation
title_full_unstemmed Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation
title_sort Sensitivity analysis of 3D frictional contact with BEM using complex-step differentiation
author Ubessi, Cristiano João Brizzi
author_facet Ubessi, Cristiano João Brizzi
Marczak, Rogerio Jose
author_role author
author2 Marczak, Rogerio Jose
author2_role author
dc.contributor.author.fl_str_mv Ubessi, Cristiano João Brizzi
Marczak, Rogerio Jose
dc.subject.por.fl_str_mv Fricção
Elementos de contorno
topic Fricção
Elementos de contorno
Boundary element method
Frictional contact
Complex step method
dc.subject.eng.fl_str_mv Boundary element method
Frictional contact
Complex step method
description This paper presents a study of the complex step differentiation method applied to a parameter sensitivity analysis for 3D elastic contact problem. The analysis is performed with the Boundary Element Method (BEM) using discontinuous elements and the Generalized Newton Method with line search (GNMls). A standard BEM implementation is used and the contact restrictions are fulfilled through the augmented Lagrangian method. This methodology in conjunction with the BEM avoids the calculation of the nonlinear derivatives during the solution process, allowing a fast and reliable solution procedure. The parameter sensitivity is evaluated using complex-step differentiation. This well-known method approximates the derivative of a function analogously to the standard finite differences method, with the advantages of being numerically exact and nearly insensitive to the step-size. As an example, a Hertz-type problem is solved and the sensitivity of the contact pressures with respect to the Young Modulus variation is evaluated. The obtained results are compared with analytical and numerical solutions found in the literature.
publishDate 2018
dc.date.issued.fl_str_mv 2018
dc.date.accessioned.fl_str_mv 2021-09-22T04:23:22Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/229971
dc.identifier.issn.pt_BR.fl_str_mv 1679-7825
dc.identifier.nrb.pt_BR.fl_str_mv 001131581
identifier_str_mv 1679-7825
001131581
url http://hdl.handle.net/10183/229971
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Latin American Journal of Solids and Structures [recurso eletrônico]. Rio de Janeiro, RJ. Vol. 15, no. 10 (2018), Art. e76, 17 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/229971/2/001131581.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/229971/1/001131581.pdf
bitstream.checksum.fl_str_mv ba25c3037cf7c8939d38e6f07ea1759d
82a9c3b44f51c70ef4aec283b19b44e6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447767345004544