Fourier transform infrared spectroscopy (FTIR) and multivariative analysis for identification of defferent vegetable oils used in biodiesel production
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/83595 |
Resumo: | The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. |
id |
UFRGS-2_2e712ece2ad555bf2a3dfd98768cba9a |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/83595 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Mueller, DanielaFerrão, Marco FlôresMarder, LucianoCosta, Adilson Ben daSchneider, Rosana de Cassia de Souza2013-12-12T01:49:52Z20131424-8220http://hdl.handle.net/10183/83595000877187The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples.application/pdfengSensors [recurso eletrônico]. Basel. Vol. 13, no. 4 (Apr. 2013), p. 4258-4271Espectroscopia : Infravermelho : Transformada de fourierAnálise multivariadaÓleos vegetaisBiodieselHCAiPCASIMCAUATR sensorRaw materialQuality controlFourier transform infrared spectroscopy (FTIR) and multivariative analysis for identification of defferent vegetable oils used in biodiesel productionEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000877187.pdf000877187.pdfTexto completo (inglês)application/pdf632704http://www.lume.ufrgs.br/bitstream/10183/83595/1/000877187.pdfdde88ba7c88e0781f157b24b8f321aadMD51TEXT000877187.pdf.txt000877187.pdf.txtExtracted Texttext/plain33412http://www.lume.ufrgs.br/bitstream/10183/83595/2/000877187.pdf.txt329287390740a64e2168919cb1683179MD52THUMBNAIL000877187.pdf.jpg000877187.pdf.jpgGenerated Thumbnailimage/jpeg2096http://www.lume.ufrgs.br/bitstream/10183/83595/3/000877187.pdf.jpgad1c735cf4451bd968e469b125ef97d5MD5310183/835952018-10-09 08:45:05.766oai:www.lume.ufrgs.br:10183/83595Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2018-10-09T11:45:05Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Fourier transform infrared spectroscopy (FTIR) and multivariative analysis for identification of defferent vegetable oils used in biodiesel production |
title |
Fourier transform infrared spectroscopy (FTIR) and multivariative analysis for identification of defferent vegetable oils used in biodiesel production |
spellingShingle |
Fourier transform infrared spectroscopy (FTIR) and multivariative analysis for identification of defferent vegetable oils used in biodiesel production Mueller, Daniela Espectroscopia : Infravermelho : Transformada de fourier Análise multivariada Óleos vegetais Biodiesel HCA iPCA SIMCA UATR sensor Raw material Quality control |
title_short |
Fourier transform infrared spectroscopy (FTIR) and multivariative analysis for identification of defferent vegetable oils used in biodiesel production |
title_full |
Fourier transform infrared spectroscopy (FTIR) and multivariative analysis for identification of defferent vegetable oils used in biodiesel production |
title_fullStr |
Fourier transform infrared spectroscopy (FTIR) and multivariative analysis for identification of defferent vegetable oils used in biodiesel production |
title_full_unstemmed |
Fourier transform infrared spectroscopy (FTIR) and multivariative analysis for identification of defferent vegetable oils used in biodiesel production |
title_sort |
Fourier transform infrared spectroscopy (FTIR) and multivariative analysis for identification of defferent vegetable oils used in biodiesel production |
author |
Mueller, Daniela |
author_facet |
Mueller, Daniela Ferrão, Marco Flôres Marder, Luciano Costa, Adilson Ben da Schneider, Rosana de Cassia de Souza |
author_role |
author |
author2 |
Ferrão, Marco Flôres Marder, Luciano Costa, Adilson Ben da Schneider, Rosana de Cassia de Souza |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Mueller, Daniela Ferrão, Marco Flôres Marder, Luciano Costa, Adilson Ben da Schneider, Rosana de Cassia de Souza |
dc.subject.por.fl_str_mv |
Espectroscopia : Infravermelho : Transformada de fourier Análise multivariada Óleos vegetais Biodiesel |
topic |
Espectroscopia : Infravermelho : Transformada de fourier Análise multivariada Óleos vegetais Biodiesel HCA iPCA SIMCA UATR sensor Raw material Quality control |
dc.subject.eng.fl_str_mv |
HCA iPCA SIMCA UATR sensor Raw material Quality control |
description |
The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. |
publishDate |
2013 |
dc.date.accessioned.fl_str_mv |
2013-12-12T01:49:52Z |
dc.date.issued.fl_str_mv |
2013 |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/83595 |
dc.identifier.issn.pt_BR.fl_str_mv |
1424-8220 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000877187 |
identifier_str_mv |
1424-8220 000877187 |
url |
http://hdl.handle.net/10183/83595 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Sensors [recurso eletrônico]. Basel. Vol. 13, no. 4 (Apr. 2013), p. 4258-4271 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/83595/1/000877187.pdf http://www.lume.ufrgs.br/bitstream/10183/83595/2/000877187.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/83595/3/000877187.pdf.jpg |
bitstream.checksum.fl_str_mv |
dde88ba7c88e0781f157b24b8f321aad 329287390740a64e2168919cb1683179 ad1c735cf4451bd968e469b125ef97d5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br |
_version_ |
1817724900010360832 |