Phase transitions in the three-state Ising spin-glass model with finite connectivity

Detalhes bibliográficos
Autor(a) principal: Erichsen Junior, Rubem
Data de Publicação: 2011
Outros Autores: Theumann, Walter Karl
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/101840
Resumo: The statistical mechanics of a two-state Ising spin-glass model with finite random connectivity, in which each site is connected to a finite number of other sites, is extended in this work within the replica technique to study the phase transitions in the three-state Ghatak-Sherrington (or random Blume-Capel) model of a spin glass with a crystal-field term. The replica symmetry ansatz for the order function is expressed in terms of a two-dimensional effective-field distribution, which is determined numerically by means of a population dynamics procedure. Phase diagrams are obtained exhibiting phase boundaries that have a reentrance with both a continuous and a genuine first-order transition with a discontinuity in the entropy. This may be seen as “inverse freezing,” which has been studied extensively lately, as a process either with or without exchange of latent heat.
id UFRGS-2_3412a343b66d14e83e71e283c32c1509
oai_identifier_str oai:www.lume.ufrgs.br:10183/101840
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Erichsen Junior, RubemTheumann, Walter Karl2014-08-26T09:26:21Z20111539-3755http://hdl.handle.net/10183/101840000794349The statistical mechanics of a two-state Ising spin-glass model with finite random connectivity, in which each site is connected to a finite number of other sites, is extended in this work within the replica technique to study the phase transitions in the three-state Ghatak-Sherrington (or random Blume-Capel) model of a spin glass with a crystal-field term. The replica symmetry ansatz for the order function is expressed in terms of a two-dimensional effective-field distribution, which is determined numerically by means of a population dynamics procedure. Phase diagrams are obtained exhibiting phase boundaries that have a reentrance with both a continuous and a genuine first-order transition with a discontinuity in the entropy. This may be seen as “inverse freezing,” which has been studied extensively lately, as a process either with or without exchange of latent heat.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 83, no. 6 (June 2011), 061126, 7 p.Física estatísticaAnálise estatísticaInteracoes de campo cristalinoEntropiaModelo de isingDiagramas de faseVidros de spinPhase transitions in the three-state Ising spin-glass model with finite connectivityEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000794349.pdf000794349.pdfTexto completo (inglês)application/pdf266594http://www.lume.ufrgs.br/bitstream/10183/101840/1/000794349.pdf9abd0559bbadcc92ce24390250d39f47MD51TEXT000794349.pdf.txt000794349.pdf.txtExtracted Texttext/plain31836http://www.lume.ufrgs.br/bitstream/10183/101840/2/000794349.pdf.txt74fabf39a270361fa0e6cd23acedd59fMD52THUMBNAIL000794349.pdf.jpg000794349.pdf.jpgGenerated Thumbnailimage/jpeg2164http://www.lume.ufrgs.br/bitstream/10183/101840/3/000794349.pdf.jpg3b646072007e4a39c02b16722b5bd709MD5310183/1018402018-10-22 09:29:35.651oai:www.lume.ufrgs.br:10183/101840Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-10-22T12:29:35Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Phase transitions in the three-state Ising spin-glass model with finite connectivity
title Phase transitions in the three-state Ising spin-glass model with finite connectivity
spellingShingle Phase transitions in the three-state Ising spin-glass model with finite connectivity
Erichsen Junior, Rubem
Física estatística
Análise estatística
Interacoes de campo cristalino
Entropia
Modelo de ising
Diagramas de fase
Vidros de spin
title_short Phase transitions in the three-state Ising spin-glass model with finite connectivity
title_full Phase transitions in the three-state Ising spin-glass model with finite connectivity
title_fullStr Phase transitions in the three-state Ising spin-glass model with finite connectivity
title_full_unstemmed Phase transitions in the three-state Ising spin-glass model with finite connectivity
title_sort Phase transitions in the three-state Ising spin-glass model with finite connectivity
author Erichsen Junior, Rubem
author_facet Erichsen Junior, Rubem
Theumann, Walter Karl
author_role author
author2 Theumann, Walter Karl
author2_role author
dc.contributor.author.fl_str_mv Erichsen Junior, Rubem
Theumann, Walter Karl
dc.subject.por.fl_str_mv Física estatística
Análise estatística
Interacoes de campo cristalino
Entropia
Modelo de ising
Diagramas de fase
Vidros de spin
topic Física estatística
Análise estatística
Interacoes de campo cristalino
Entropia
Modelo de ising
Diagramas de fase
Vidros de spin
description The statistical mechanics of a two-state Ising spin-glass model with finite random connectivity, in which each site is connected to a finite number of other sites, is extended in this work within the replica technique to study the phase transitions in the three-state Ghatak-Sherrington (or random Blume-Capel) model of a spin glass with a crystal-field term. The replica symmetry ansatz for the order function is expressed in terms of a two-dimensional effective-field distribution, which is determined numerically by means of a population dynamics procedure. Phase diagrams are obtained exhibiting phase boundaries that have a reentrance with both a continuous and a genuine first-order transition with a discontinuity in the entropy. This may be seen as “inverse freezing,” which has been studied extensively lately, as a process either with or without exchange of latent heat.
publishDate 2011
dc.date.issued.fl_str_mv 2011
dc.date.accessioned.fl_str_mv 2014-08-26T09:26:21Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/101840
dc.identifier.issn.pt_BR.fl_str_mv 1539-3755
dc.identifier.nrb.pt_BR.fl_str_mv 000794349
identifier_str_mv 1539-3755
000794349
url http://hdl.handle.net/10183/101840
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 83, no. 6 (June 2011), 061126, 7 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/101840/1/000794349.pdf
http://www.lume.ufrgs.br/bitstream/10183/101840/2/000794349.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/101840/3/000794349.pdf.jpg
bitstream.checksum.fl_str_mv 9abd0559bbadcc92ce24390250d39f47
74fabf39a270361fa0e6cd23acedd59f
3b646072007e4a39c02b16722b5bd709
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447556140826624