Stochastic perturbations in open chaotic systems : random versus noisy maps
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/101843 |
Resumo: | We investigate the effects of random perturbations on fully chaotic open systems. Perturbations can be applied to each trajectory independently (white noise) or simultaneously to all trajectories (random map). We compare these two scenarios by generalizing the theory of open chaotic systems and introducing a time-dependent conditionally-map-invariant measure. For the same perturbation strength we show that the escape rate of the random map is always larger than that of the noisy map. In random maps we show that the escape rate κ and dimensions D of the relevant fractal sets often depend nonmonotonically on the intensity of the random perturbation. We discuss the accuracy (bias) and precision (variance) of finite-size estimators of κ and D, and show that the improvement of the precision of the estimations with the number of trajectories N is extremely slow (∝1/ 1nN). We also argue that the finite-size D estimators are typically biased. General theoretical results are combined with analytical calculations and numerical simulations in area-preserving baker maps. |
id |
UFRGS-2_385d20399d92fd75052b716436c27139 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/101843 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Bodái, TamásAltmann, Eduardo GoldaniEndler, Antônio2014-08-26T09:26:22Z20131539-3755http://hdl.handle.net/10183/101843000897753We investigate the effects of random perturbations on fully chaotic open systems. Perturbations can be applied to each trajectory independently (white noise) or simultaneously to all trajectories (random map). We compare these two scenarios by generalizing the theory of open chaotic systems and introducing a time-dependent conditionally-map-invariant measure. For the same perturbation strength we show that the escape rate of the random map is always larger than that of the noisy map. In random maps we show that the escape rate κ and dimensions D of the relevant fractal sets often depend nonmonotonically on the intensity of the random perturbation. We discuss the accuracy (bias) and precision (variance) of finite-size estimators of κ and D, and show that the improvement of the precision of the estimations with the number of trajectories N is extremely slow (∝1/ 1nN). We also argue that the finite-size D estimators are typically biased. General theoretical results are combined with analytical calculations and numerical simulations in area-preserving baker maps.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 87, no. 4 (Apr. 2013), 042902, 12 p.Processos estocásticosProcessos randômicosCaosRuído brancoStochastic perturbations in open chaotic systems : random versus noisy mapsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000897753.pdf000897753.pdfTexto completo (inglês)application/pdf3014434http://www.lume.ufrgs.br/bitstream/10183/101843/1/000897753.pdfd955620cd1c0006db95dcb6471b14cb6MD51TEXT000897753.pdf.txt000897753.pdf.txtExtracted Texttext/plain68523http://www.lume.ufrgs.br/bitstream/10183/101843/2/000897753.pdf.txtf39f0995658d671f383df8b228735f6fMD52THUMBNAIL000897753.pdf.jpg000897753.pdf.jpgGenerated Thumbnailimage/jpeg2208http://www.lume.ufrgs.br/bitstream/10183/101843/3/000897753.pdf.jpg7c426fdbc2e5021abb308b73e455253eMD5310183/1018432023-06-29 03:28:07.57185oai:www.lume.ufrgs.br:10183/101843Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-06-29T06:28:07Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Stochastic perturbations in open chaotic systems : random versus noisy maps |
title |
Stochastic perturbations in open chaotic systems : random versus noisy maps |
spellingShingle |
Stochastic perturbations in open chaotic systems : random versus noisy maps Bodái, Tamás Processos estocásticos Processos randômicos Caos Ruído branco |
title_short |
Stochastic perturbations in open chaotic systems : random versus noisy maps |
title_full |
Stochastic perturbations in open chaotic systems : random versus noisy maps |
title_fullStr |
Stochastic perturbations in open chaotic systems : random versus noisy maps |
title_full_unstemmed |
Stochastic perturbations in open chaotic systems : random versus noisy maps |
title_sort |
Stochastic perturbations in open chaotic systems : random versus noisy maps |
author |
Bodái, Tamás |
author_facet |
Bodái, Tamás Altmann, Eduardo Goldani Endler, Antônio |
author_role |
author |
author2 |
Altmann, Eduardo Goldani Endler, Antônio |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Bodái, Tamás Altmann, Eduardo Goldani Endler, Antônio |
dc.subject.por.fl_str_mv |
Processos estocásticos Processos randômicos Caos Ruído branco |
topic |
Processos estocásticos Processos randômicos Caos Ruído branco |
description |
We investigate the effects of random perturbations on fully chaotic open systems. Perturbations can be applied to each trajectory independently (white noise) or simultaneously to all trajectories (random map). We compare these two scenarios by generalizing the theory of open chaotic systems and introducing a time-dependent conditionally-map-invariant measure. For the same perturbation strength we show that the escape rate of the random map is always larger than that of the noisy map. In random maps we show that the escape rate κ and dimensions D of the relevant fractal sets often depend nonmonotonically on the intensity of the random perturbation. We discuss the accuracy (bias) and precision (variance) of finite-size estimators of κ and D, and show that the improvement of the precision of the estimations with the number of trajectories N is extremely slow (∝1/ 1nN). We also argue that the finite-size D estimators are typically biased. General theoretical results are combined with analytical calculations and numerical simulations in area-preserving baker maps. |
publishDate |
2013 |
dc.date.issued.fl_str_mv |
2013 |
dc.date.accessioned.fl_str_mv |
2014-08-26T09:26:22Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/101843 |
dc.identifier.issn.pt_BR.fl_str_mv |
1539-3755 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000897753 |
identifier_str_mv |
1539-3755 000897753 |
url |
http://hdl.handle.net/10183/101843 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 87, no. 4 (Apr. 2013), 042902, 12 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/101843/1/000897753.pdf http://www.lume.ufrgs.br/bitstream/10183/101843/2/000897753.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/101843/3/000897753.pdf.jpg |
bitstream.checksum.fl_str_mv |
d955620cd1c0006db95dcb6471b14cb6 f39f0995658d671f383df8b228735f6f 7c426fdbc2e5021abb308b73e455253e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447556146069504 |