Stochastic perturbations in open chaotic systems : random versus noisy maps

Detalhes bibliográficos
Autor(a) principal: Bodái, Tamás
Data de Publicação: 2013
Outros Autores: Altmann, Eduardo Goldani, Endler, Antônio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/101843
Resumo: We investigate the effects of random perturbations on fully chaotic open systems. Perturbations can be applied to each trajectory independently (white noise) or simultaneously to all trajectories (random map). We compare these two scenarios by generalizing the theory of open chaotic systems and introducing a time-dependent conditionally-map-invariant measure. For the same perturbation strength we show that the escape rate of the random map is always larger than that of the noisy map. In random maps we show that the escape rate κ and dimensions D of the relevant fractal sets often depend nonmonotonically on the intensity of the random perturbation. We discuss the accuracy (bias) and precision (variance) of finite-size estimators of κ and D, and show that the improvement of the precision of the estimations with the number of trajectories N is extremely slow (∝1/ 1nN). We also argue that the finite-size D estimators are typically biased. General theoretical results are combined with analytical calculations and numerical simulations in area-preserving baker maps.
id UFRGS-2_385d20399d92fd75052b716436c27139
oai_identifier_str oai:www.lume.ufrgs.br:10183/101843
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Bodái, TamásAltmann, Eduardo GoldaniEndler, Antônio2014-08-26T09:26:22Z20131539-3755http://hdl.handle.net/10183/101843000897753We investigate the effects of random perturbations on fully chaotic open systems. Perturbations can be applied to each trajectory independently (white noise) or simultaneously to all trajectories (random map). We compare these two scenarios by generalizing the theory of open chaotic systems and introducing a time-dependent conditionally-map-invariant measure. For the same perturbation strength we show that the escape rate of the random map is always larger than that of the noisy map. In random maps we show that the escape rate κ and dimensions D of the relevant fractal sets often depend nonmonotonically on the intensity of the random perturbation. We discuss the accuracy (bias) and precision (variance) of finite-size estimators of κ and D, and show that the improvement of the precision of the estimations with the number of trajectories N is extremely slow (∝1/ 1nN). We also argue that the finite-size D estimators are typically biased. General theoretical results are combined with analytical calculations and numerical simulations in area-preserving baker maps.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 87, no. 4 (Apr. 2013), 042902, 12 p.Processos estocásticosProcessos randômicosCaosRuído brancoStochastic perturbations in open chaotic systems : random versus noisy mapsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000897753.pdf000897753.pdfTexto completo (inglês)application/pdf3014434http://www.lume.ufrgs.br/bitstream/10183/101843/1/000897753.pdfd955620cd1c0006db95dcb6471b14cb6MD51TEXT000897753.pdf.txt000897753.pdf.txtExtracted Texttext/plain68523http://www.lume.ufrgs.br/bitstream/10183/101843/2/000897753.pdf.txtf39f0995658d671f383df8b228735f6fMD52THUMBNAIL000897753.pdf.jpg000897753.pdf.jpgGenerated Thumbnailimage/jpeg2208http://www.lume.ufrgs.br/bitstream/10183/101843/3/000897753.pdf.jpg7c426fdbc2e5021abb308b73e455253eMD5310183/1018432023-06-29 03:28:07.57185oai:www.lume.ufrgs.br:10183/101843Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-06-29T06:28:07Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Stochastic perturbations in open chaotic systems : random versus noisy maps
title Stochastic perturbations in open chaotic systems : random versus noisy maps
spellingShingle Stochastic perturbations in open chaotic systems : random versus noisy maps
Bodái, Tamás
Processos estocásticos
Processos randômicos
Caos
Ruído branco
title_short Stochastic perturbations in open chaotic systems : random versus noisy maps
title_full Stochastic perturbations in open chaotic systems : random versus noisy maps
title_fullStr Stochastic perturbations in open chaotic systems : random versus noisy maps
title_full_unstemmed Stochastic perturbations in open chaotic systems : random versus noisy maps
title_sort Stochastic perturbations in open chaotic systems : random versus noisy maps
author Bodái, Tamás
author_facet Bodái, Tamás
Altmann, Eduardo Goldani
Endler, Antônio
author_role author
author2 Altmann, Eduardo Goldani
Endler, Antônio
author2_role author
author
dc.contributor.author.fl_str_mv Bodái, Tamás
Altmann, Eduardo Goldani
Endler, Antônio
dc.subject.por.fl_str_mv Processos estocásticos
Processos randômicos
Caos
Ruído branco
topic Processos estocásticos
Processos randômicos
Caos
Ruído branco
description We investigate the effects of random perturbations on fully chaotic open systems. Perturbations can be applied to each trajectory independently (white noise) or simultaneously to all trajectories (random map). We compare these two scenarios by generalizing the theory of open chaotic systems and introducing a time-dependent conditionally-map-invariant measure. For the same perturbation strength we show that the escape rate of the random map is always larger than that of the noisy map. In random maps we show that the escape rate κ and dimensions D of the relevant fractal sets often depend nonmonotonically on the intensity of the random perturbation. We discuss the accuracy (bias) and precision (variance) of finite-size estimators of κ and D, and show that the improvement of the precision of the estimations with the number of trajectories N is extremely slow (∝1/ 1nN). We also argue that the finite-size D estimators are typically biased. General theoretical results are combined with analytical calculations and numerical simulations in area-preserving baker maps.
publishDate 2013
dc.date.issued.fl_str_mv 2013
dc.date.accessioned.fl_str_mv 2014-08-26T09:26:22Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/101843
dc.identifier.issn.pt_BR.fl_str_mv 1539-3755
dc.identifier.nrb.pt_BR.fl_str_mv 000897753
identifier_str_mv 1539-3755
000897753
url http://hdl.handle.net/10183/101843
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 87, no. 4 (Apr. 2013), 042902, 12 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/101843/1/000897753.pdf
http://www.lume.ufrgs.br/bitstream/10183/101843/2/000897753.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/101843/3/000897753.pdf.jpg
bitstream.checksum.fl_str_mv d955620cd1c0006db95dcb6471b14cb6
f39f0995658d671f383df8b228735f6f
7c426fdbc2e5021abb308b73e455253e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447556146069504