Thermodynamic collapse in a lattice-gas model for a two-component system of penetrable particles

Detalhes bibliográficos
Autor(a) principal: Frydel, Derek
Data de Publicação: 2020
Outros Autores: Levin, Yan
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/217926
Resumo: We study a lattice-gas model of penetrable particles on a square-lattice substrate with same-site and nearestneighbor interactions. Penetrability implies that the number of particles occupying a single lattice site is unlimited and the model itself is intended as a simple representation of penetrable particles encountered in realistic soft-matter systems. Our specific focus is on a binary mixture, where particles of the same species repel and those of the opposite species attract each other. As a consequence of penetrability and the unlimited occupation of each site, the system exhibits thermodynamic collapse, which in simulations is manifested by an emergence of extremely dense clusters scattered throughout the system with energy of a cluster E ∝ −n2, where n is the number of particles in a cluster. After transforming a particle system into a spin system, in the large density limit the Hamiltonian recovers a simple harmonic form, resulting in the discrete Gaussian model used in the past to model the roughening transition of interfaces. For finite densities, due to the presence of a nonharmonic term, the system is approximated using a variational Gaussian model.
id UFRGS-2_4383c286b9cb7eaca8b9af5f8d3a485c
oai_identifier_str oai:www.lume.ufrgs.br:10183/217926
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Frydel, DerekLevin, Yan2021-02-11T04:11:34Z20201539-3755http://hdl.handle.net/10183/217926001120702We study a lattice-gas model of penetrable particles on a square-lattice substrate with same-site and nearestneighbor interactions. Penetrability implies that the number of particles occupying a single lattice site is unlimited and the model itself is intended as a simple representation of penetrable particles encountered in realistic soft-matter systems. Our specific focus is on a binary mixture, where particles of the same species repel and those of the opposite species attract each other. As a consequence of penetrability and the unlimited occupation of each site, the system exhibits thermodynamic collapse, which in simulations is manifested by an emergence of extremely dense clusters scattered throughout the system with energy of a cluster E ∝ −n2, where n is the number of particles in a cluster. After transforming a particle system into a spin system, in the large density limit the Hamiltonian recovers a simple harmonic form, resulting in the discrete Gaussian model used in the past to model the roughening transition of interfaces. For finite densities, due to the presence of a nonharmonic term, the system is approximated using a variational Gaussian model.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Melville. Vol. 102, no. 3 (Sep. 2020), 032101, 13 p.Transformações de faseModelo de isingMétodo de Monte CarloMétodo de GaussThermodynamic collapse in a lattice-gas model for a two-component system of penetrable particlesEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001120702.pdf.txt001120702.pdf.txtExtracted Texttext/plain54638http://www.lume.ufrgs.br/bitstream/10183/217926/2/001120702.pdf.txt23eeae24409d52c1de4785dc2fece5c6MD52ORIGINAL001120702.pdfTexto completo (inglês)application/pdf1554270http://www.lume.ufrgs.br/bitstream/10183/217926/1/001120702.pdf48ed528dfa40c6c98e0db1054f7a8959MD5110183/2179262023-09-02 03:35:38.409525oai:www.lume.ufrgs.br:10183/217926Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-09-02T06:35:38Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Thermodynamic collapse in a lattice-gas model for a two-component system of penetrable particles
title Thermodynamic collapse in a lattice-gas model for a two-component system of penetrable particles
spellingShingle Thermodynamic collapse in a lattice-gas model for a two-component system of penetrable particles
Frydel, Derek
Transformações de fase
Modelo de ising
Método de Monte Carlo
Método de Gauss
title_short Thermodynamic collapse in a lattice-gas model for a two-component system of penetrable particles
title_full Thermodynamic collapse in a lattice-gas model for a two-component system of penetrable particles
title_fullStr Thermodynamic collapse in a lattice-gas model for a two-component system of penetrable particles
title_full_unstemmed Thermodynamic collapse in a lattice-gas model for a two-component system of penetrable particles
title_sort Thermodynamic collapse in a lattice-gas model for a two-component system of penetrable particles
author Frydel, Derek
author_facet Frydel, Derek
Levin, Yan
author_role author
author2 Levin, Yan
author2_role author
dc.contributor.author.fl_str_mv Frydel, Derek
Levin, Yan
dc.subject.por.fl_str_mv Transformações de fase
Modelo de ising
Método de Monte Carlo
Método de Gauss
topic Transformações de fase
Modelo de ising
Método de Monte Carlo
Método de Gauss
description We study a lattice-gas model of penetrable particles on a square-lattice substrate with same-site and nearestneighbor interactions. Penetrability implies that the number of particles occupying a single lattice site is unlimited and the model itself is intended as a simple representation of penetrable particles encountered in realistic soft-matter systems. Our specific focus is on a binary mixture, where particles of the same species repel and those of the opposite species attract each other. As a consequence of penetrability and the unlimited occupation of each site, the system exhibits thermodynamic collapse, which in simulations is manifested by an emergence of extremely dense clusters scattered throughout the system with energy of a cluster E ∝ −n2, where n is the number of particles in a cluster. After transforming a particle system into a spin system, in the large density limit the Hamiltonian recovers a simple harmonic form, resulting in the discrete Gaussian model used in the past to model the roughening transition of interfaces. For finite densities, due to the presence of a nonharmonic term, the system is approximated using a variational Gaussian model.
publishDate 2020
dc.date.issued.fl_str_mv 2020
dc.date.accessioned.fl_str_mv 2021-02-11T04:11:34Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/217926
dc.identifier.issn.pt_BR.fl_str_mv 1539-3755
dc.identifier.nrb.pt_BR.fl_str_mv 001120702
identifier_str_mv 1539-3755
001120702
url http://hdl.handle.net/10183/217926
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. E, Statistical, nonlinear, and soft matter physics. Melville. Vol. 102, no. 3 (Sep. 2020), 032101, 13 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/217926/2/001120702.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/217926/1/001120702.pdf
bitstream.checksum.fl_str_mv 23eeae24409d52c1de4785dc2fece5c6
48ed528dfa40c6c98e0db1054f7a8959
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447731433373696