Algorithm for solution of convex MINLP problems

Detalhes bibliográficos
Autor(a) principal: Pereira, Elaine Corrêa
Data de Publicação: 2001
Outros Autores: Secchi, Argimiro Resende
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/259143
Resumo: The current work shows the fonnulation and implementation of an algorithm for the solution of convex rnixed-integer nonlinear programming (MINLP) problems. The proposed algorithm does not folJow the traditional sequence of solutions of nonlinear programming (NLP) subproblems and master mixed-integer linear programming (MILP) problems. lnstead, the mas ter problem is defined dynamically during the tree search to reduce the number of nodes that need to be enumerated. A branch and bound search is perfonned to predict lower bound by solving linear programrning (LP) subproblems until feasible integer solutions are found. For these nades, noolinear programming subproblems are olved, providing upper bounds and new linear approximations, which are used to tighten the linear representation of the open nodes in the search tree. Numerical results for convex and nonconvex test problems are analyzed, comparing the efficiency of the proposed algorithm and the general algebraic modeling system (GAMS).
id UFRGS-2_463cc1b1a90f8d614f5f4d70d8b4b72a
oai_identifier_str oai:www.lume.ufrgs.br:10183/259143
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Pereira, Elaine CorrêaSecchi, Argimiro Resende2023-06-17T03:38:07Z20010101-8205http://hdl.handle.net/10183/259143000345391The current work shows the fonnulation and implementation of an algorithm for the solution of convex rnixed-integer nonlinear programming (MINLP) problems. The proposed algorithm does not folJow the traditional sequence of solutions of nonlinear programming (NLP) subproblems and master mixed-integer linear programming (MILP) problems. lnstead, the mas ter problem is defined dynamically during the tree search to reduce the number of nodes that need to be enumerated. A branch and bound search is perfonned to predict lower bound by solving linear programrning (LP) subproblems until feasible integer solutions are found. For these nades, noolinear programming subproblems are olved, providing upper bounds and new linear approximations, which are used to tighten the linear representation of the open nodes in the search tree. Numerical results for convex and nonconvex test problems are analyzed, comparing the efficiency of the proposed algorithm and the general algebraic modeling system (GAMS).application/pdfengComputational and applied mathematics. Rio de Janeiro, RJ. Vol. 20, n. 3 (2001), p. 341-360Análise numéricaProcessos químicosOtimizaçãoOptimizationMixed-integer nonlinear programmingBranch and bound searchAlgorithm for solution of convex MINLP problemsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000345391.pdf.txt000345391.pdf.txtExtracted Texttext/plain32380http://www.lume.ufrgs.br/bitstream/10183/259143/2/000345391.pdf.txtb0756c3fc6e02d85fb856ba45d6932f3MD52ORIGINAL000345391.pdfTexto completo (inglês)application/pdf3297802http://www.lume.ufrgs.br/bitstream/10183/259143/1/000345391.pdff109d42df0b384aebdf1135d701973e0MD5110183/2591432023-06-18 03:52:41.036114oai:www.lume.ufrgs.br:10183/259143Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-06-18T06:52:41Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Algorithm for solution of convex MINLP problems
title Algorithm for solution of convex MINLP problems
spellingShingle Algorithm for solution of convex MINLP problems
Pereira, Elaine Corrêa
Análise numérica
Processos químicos
Otimização
Optimization
Mixed-integer nonlinear programming
Branch and bound search
title_short Algorithm for solution of convex MINLP problems
title_full Algorithm for solution of convex MINLP problems
title_fullStr Algorithm for solution of convex MINLP problems
title_full_unstemmed Algorithm for solution of convex MINLP problems
title_sort Algorithm for solution of convex MINLP problems
author Pereira, Elaine Corrêa
author_facet Pereira, Elaine Corrêa
Secchi, Argimiro Resende
author_role author
author2 Secchi, Argimiro Resende
author2_role author
dc.contributor.author.fl_str_mv Pereira, Elaine Corrêa
Secchi, Argimiro Resende
dc.subject.por.fl_str_mv Análise numérica
Processos químicos
Otimização
topic Análise numérica
Processos químicos
Otimização
Optimization
Mixed-integer nonlinear programming
Branch and bound search
dc.subject.eng.fl_str_mv Optimization
Mixed-integer nonlinear programming
Branch and bound search
description The current work shows the fonnulation and implementation of an algorithm for the solution of convex rnixed-integer nonlinear programming (MINLP) problems. The proposed algorithm does not folJow the traditional sequence of solutions of nonlinear programming (NLP) subproblems and master mixed-integer linear programming (MILP) problems. lnstead, the mas ter problem is defined dynamically during the tree search to reduce the number of nodes that need to be enumerated. A branch and bound search is perfonned to predict lower bound by solving linear programrning (LP) subproblems until feasible integer solutions are found. For these nades, noolinear programming subproblems are olved, providing upper bounds and new linear approximations, which are used to tighten the linear representation of the open nodes in the search tree. Numerical results for convex and nonconvex test problems are analyzed, comparing the efficiency of the proposed algorithm and the general algebraic modeling system (GAMS).
publishDate 2001
dc.date.issued.fl_str_mv 2001
dc.date.accessioned.fl_str_mv 2023-06-17T03:38:07Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/259143
dc.identifier.issn.pt_BR.fl_str_mv 0101-8205
dc.identifier.nrb.pt_BR.fl_str_mv 000345391
identifier_str_mv 0101-8205
000345391
url http://hdl.handle.net/10183/259143
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Computational and applied mathematics. Rio de Janeiro, RJ. Vol. 20, n. 3 (2001), p. 341-360
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/259143/2/000345391.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/259143/1/000345391.pdf
bitstream.checksum.fl_str_mv b0756c3fc6e02d85fb856ba45d6932f3
f109d42df0b384aebdf1135d701973e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447829020147712