Algorithm for solution of convex MINLP problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/259143 |
Resumo: | The current work shows the fonnulation and implementation of an algorithm for the solution of convex rnixed-integer nonlinear programming (MINLP) problems. The proposed algorithm does not folJow the traditional sequence of solutions of nonlinear programming (NLP) subproblems and master mixed-integer linear programming (MILP) problems. lnstead, the mas ter problem is defined dynamically during the tree search to reduce the number of nodes that need to be enumerated. A branch and bound search is perfonned to predict lower bound by solving linear programrning (LP) subproblems until feasible integer solutions are found. For these nades, noolinear programming subproblems are olved, providing upper bounds and new linear approximations, which are used to tighten the linear representation of the open nodes in the search tree. Numerical results for convex and nonconvex test problems are analyzed, comparing the efficiency of the proposed algorithm and the general algebraic modeling system (GAMS). |
id |
UFRGS-2_463cc1b1a90f8d614f5f4d70d8b4b72a |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/259143 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Pereira, Elaine CorrêaSecchi, Argimiro Resende2023-06-17T03:38:07Z20010101-8205http://hdl.handle.net/10183/259143000345391The current work shows the fonnulation and implementation of an algorithm for the solution of convex rnixed-integer nonlinear programming (MINLP) problems. The proposed algorithm does not folJow the traditional sequence of solutions of nonlinear programming (NLP) subproblems and master mixed-integer linear programming (MILP) problems. lnstead, the mas ter problem is defined dynamically during the tree search to reduce the number of nodes that need to be enumerated. A branch and bound search is perfonned to predict lower bound by solving linear programrning (LP) subproblems until feasible integer solutions are found. For these nades, noolinear programming subproblems are olved, providing upper bounds and new linear approximations, which are used to tighten the linear representation of the open nodes in the search tree. Numerical results for convex and nonconvex test problems are analyzed, comparing the efficiency of the proposed algorithm and the general algebraic modeling system (GAMS).application/pdfengComputational and applied mathematics. Rio de Janeiro, RJ. Vol. 20, n. 3 (2001), p. 341-360Análise numéricaProcessos químicosOtimizaçãoOptimizationMixed-integer nonlinear programmingBranch and bound searchAlgorithm for solution of convex MINLP problemsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000345391.pdf.txt000345391.pdf.txtExtracted Texttext/plain32380http://www.lume.ufrgs.br/bitstream/10183/259143/2/000345391.pdf.txtb0756c3fc6e02d85fb856ba45d6932f3MD52ORIGINAL000345391.pdfTexto completo (inglês)application/pdf3297802http://www.lume.ufrgs.br/bitstream/10183/259143/1/000345391.pdff109d42df0b384aebdf1135d701973e0MD5110183/2591432023-06-18 03:52:41.036114oai:www.lume.ufrgs.br:10183/259143Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-06-18T06:52:41Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Algorithm for solution of convex MINLP problems |
title |
Algorithm for solution of convex MINLP problems |
spellingShingle |
Algorithm for solution of convex MINLP problems Pereira, Elaine Corrêa Análise numérica Processos químicos Otimização Optimization Mixed-integer nonlinear programming Branch and bound search |
title_short |
Algorithm for solution of convex MINLP problems |
title_full |
Algorithm for solution of convex MINLP problems |
title_fullStr |
Algorithm for solution of convex MINLP problems |
title_full_unstemmed |
Algorithm for solution of convex MINLP problems |
title_sort |
Algorithm for solution of convex MINLP problems |
author |
Pereira, Elaine Corrêa |
author_facet |
Pereira, Elaine Corrêa Secchi, Argimiro Resende |
author_role |
author |
author2 |
Secchi, Argimiro Resende |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Pereira, Elaine Corrêa Secchi, Argimiro Resende |
dc.subject.por.fl_str_mv |
Análise numérica Processos químicos Otimização |
topic |
Análise numérica Processos químicos Otimização Optimization Mixed-integer nonlinear programming Branch and bound search |
dc.subject.eng.fl_str_mv |
Optimization Mixed-integer nonlinear programming Branch and bound search |
description |
The current work shows the fonnulation and implementation of an algorithm for the solution of convex rnixed-integer nonlinear programming (MINLP) problems. The proposed algorithm does not folJow the traditional sequence of solutions of nonlinear programming (NLP) subproblems and master mixed-integer linear programming (MILP) problems. lnstead, the mas ter problem is defined dynamically during the tree search to reduce the number of nodes that need to be enumerated. A branch and bound search is perfonned to predict lower bound by solving linear programrning (LP) subproblems until feasible integer solutions are found. For these nades, noolinear programming subproblems are olved, providing upper bounds and new linear approximations, which are used to tighten the linear representation of the open nodes in the search tree. Numerical results for convex and nonconvex test problems are analyzed, comparing the efficiency of the proposed algorithm and the general algebraic modeling system (GAMS). |
publishDate |
2001 |
dc.date.issued.fl_str_mv |
2001 |
dc.date.accessioned.fl_str_mv |
2023-06-17T03:38:07Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/259143 |
dc.identifier.issn.pt_BR.fl_str_mv |
0101-8205 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000345391 |
identifier_str_mv |
0101-8205 000345391 |
url |
http://hdl.handle.net/10183/259143 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Computational and applied mathematics. Rio de Janeiro, RJ. Vol. 20, n. 3 (2001), p. 341-360 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/259143/2/000345391.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/259143/1/000345391.pdf |
bitstream.checksum.fl_str_mv |
b0756c3fc6e02d85fb856ba45d6932f3 f109d42df0b384aebdf1135d701973e0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447829020147712 |