Information geometric similarity measurement for near-random stochastic processes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/27592 |
Resumo: | We outline the information-theoretic differential geometry of gamma distributions, which contain exponential distributions as a special case, and log-gamma distributions. Our arguments support the opinion that these distributions have a natural role in representing departures from randomness, uniformity, and Gaussian behavior in stochastic processes. We show also how the information geometry provides a surprisingly tractable Riemannian manifold and product spaces thereof, on which may be represented the evolution of a stochastic process, or the comparison of different processes, by means of well-founded maximum likelihood parameter estimation. Our model incorporates possible correlations among parameters. We discuss applications and provide some illustrations from a recent study of amino acid self-clustering in protein sequences; we provide also some results from simulations for multisymbol sequences. |
id |
UFRGS-2_4a09a787fdff470e8f356e166349d804 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/27592 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Dodson, C.T.J.Scharcanski, Jacob2011-01-29T06:00:26Z20031083-4427http://hdl.handle.net/10183/27592000392547We outline the information-theoretic differential geometry of gamma distributions, which contain exponential distributions as a special case, and log-gamma distributions. Our arguments support the opinion that these distributions have a natural role in representing departures from randomness, uniformity, and Gaussian behavior in stochastic processes. We show also how the information geometry provides a surprisingly tractable Riemannian manifold and product spaces thereof, on which may be represented the evolution of a stochastic process, or the comparison of different processes, by means of well-founded maximum likelihood parameter estimation. Our model incorporates possible correlations among parameters. We discuss applications and provide some illustrations from a recent study of amino acid self-clustering in protein sequences; we provide also some results from simulations for multisymbol sequences.application/pdfengIEEE transactions on systems, man, and cybernetics. A, Systems and humans. New York. Vol. 33, No. 4 (2003), p. 435-440MatemáticaGamma modelsInformation geometryMultisymbol sequencesRandomSearchStochastic processInformation geometric similarity measurement for near-random stochastic processesEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000392547.pdf000392547.pdfTexto completo (inglês)application/pdf854634http://www.lume.ufrgs.br/bitstream/10183/27592/1/000392547.pdf4463dc98d4d64109a8a1f986ddc6a8cfMD51TEXT000392547.pdf.txt000392547.pdf.txtExtracted Texttext/plain26706http://www.lume.ufrgs.br/bitstream/10183/27592/2/000392547.pdf.txta60a62b40b94271d1ac7c644078cff56MD52THUMBNAIL000392547.pdf.jpg000392547.pdf.jpgGenerated Thumbnailimage/jpeg2162http://www.lume.ufrgs.br/bitstream/10183/27592/3/000392547.pdf.jpg01948b05e3618bc6de23bf7752df195cMD5310183/275922021-06-13 04:30:46.323312oai:www.lume.ufrgs.br:10183/27592Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-13T07:30:46Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Information geometric similarity measurement for near-random stochastic processes |
title |
Information geometric similarity measurement for near-random stochastic processes |
spellingShingle |
Information geometric similarity measurement for near-random stochastic processes Dodson, C.T.J. Matemática Gamma models Information geometry Multisymbol sequences Random Search Stochastic process |
title_short |
Information geometric similarity measurement for near-random stochastic processes |
title_full |
Information geometric similarity measurement for near-random stochastic processes |
title_fullStr |
Information geometric similarity measurement for near-random stochastic processes |
title_full_unstemmed |
Information geometric similarity measurement for near-random stochastic processes |
title_sort |
Information geometric similarity measurement for near-random stochastic processes |
author |
Dodson, C.T.J. |
author_facet |
Dodson, C.T.J. Scharcanski, Jacob |
author_role |
author |
author2 |
Scharcanski, Jacob |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Dodson, C.T.J. Scharcanski, Jacob |
dc.subject.por.fl_str_mv |
Matemática |
topic |
Matemática Gamma models Information geometry Multisymbol sequences Random Search Stochastic process |
dc.subject.eng.fl_str_mv |
Gamma models Information geometry Multisymbol sequences Random Search Stochastic process |
description |
We outline the information-theoretic differential geometry of gamma distributions, which contain exponential distributions as a special case, and log-gamma distributions. Our arguments support the opinion that these distributions have a natural role in representing departures from randomness, uniformity, and Gaussian behavior in stochastic processes. We show also how the information geometry provides a surprisingly tractable Riemannian manifold and product spaces thereof, on which may be represented the evolution of a stochastic process, or the comparison of different processes, by means of well-founded maximum likelihood parameter estimation. Our model incorporates possible correlations among parameters. We discuss applications and provide some illustrations from a recent study of amino acid self-clustering in protein sequences; we provide also some results from simulations for multisymbol sequences. |
publishDate |
2003 |
dc.date.issued.fl_str_mv |
2003 |
dc.date.accessioned.fl_str_mv |
2011-01-29T06:00:26Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/27592 |
dc.identifier.issn.pt_BR.fl_str_mv |
1083-4427 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000392547 |
identifier_str_mv |
1083-4427 000392547 |
url |
http://hdl.handle.net/10183/27592 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
IEEE transactions on systems, man, and cybernetics. A, Systems and humans. New York. Vol. 33, No. 4 (2003), p. 435-440 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/27592/1/000392547.pdf http://www.lume.ufrgs.br/bitstream/10183/27592/2/000392547.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/27592/3/000392547.pdf.jpg |
bitstream.checksum.fl_str_mv |
4463dc98d4d64109a8a1f986ddc6a8cf a60a62b40b94271d1ac7c644078cff56 01948b05e3618bc6de23bf7752df195c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447422096113664 |