Information geometric similarity measurement for near-random stochastic processes

Detalhes bibliográficos
Autor(a) principal: Dodson, C.T.J.
Data de Publicação: 2003
Outros Autores: Scharcanski, Jacob
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/27592
Resumo: We outline the information-theoretic differential geometry of gamma distributions, which contain exponential distributions as a special case, and log-gamma distributions. Our arguments support the opinion that these distributions have a natural role in representing departures from randomness, uniformity, and Gaussian behavior in stochastic processes. We show also how the information geometry provides a surprisingly tractable Riemannian manifold and product spaces thereof, on which may be represented the evolution of a stochastic process, or the comparison of different processes, by means of well-founded maximum likelihood parameter estimation. Our model incorporates possible correlations among parameters. We discuss applications and provide some illustrations from a recent study of amino acid self-clustering in protein sequences; we provide also some results from simulations for multisymbol sequences.
id UFRGS-2_4a09a787fdff470e8f356e166349d804
oai_identifier_str oai:www.lume.ufrgs.br:10183/27592
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Dodson, C.T.J.Scharcanski, Jacob2011-01-29T06:00:26Z20031083-4427http://hdl.handle.net/10183/27592000392547We outline the information-theoretic differential geometry of gamma distributions, which contain exponential distributions as a special case, and log-gamma distributions. Our arguments support the opinion that these distributions have a natural role in representing departures from randomness, uniformity, and Gaussian behavior in stochastic processes. We show also how the information geometry provides a surprisingly tractable Riemannian manifold and product spaces thereof, on which may be represented the evolution of a stochastic process, or the comparison of different processes, by means of well-founded maximum likelihood parameter estimation. Our model incorporates possible correlations among parameters. We discuss applications and provide some illustrations from a recent study of amino acid self-clustering in protein sequences; we provide also some results from simulations for multisymbol sequences.application/pdfengIEEE transactions on systems, man, and cybernetics. A, Systems and humans. New York. Vol. 33, No. 4 (2003), p. 435-440MatemáticaGamma modelsInformation geometryMultisymbol sequencesRandomSearchStochastic processInformation geometric similarity measurement for near-random stochastic processesEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000392547.pdf000392547.pdfTexto completo (inglês)application/pdf854634http://www.lume.ufrgs.br/bitstream/10183/27592/1/000392547.pdf4463dc98d4d64109a8a1f986ddc6a8cfMD51TEXT000392547.pdf.txt000392547.pdf.txtExtracted Texttext/plain26706http://www.lume.ufrgs.br/bitstream/10183/27592/2/000392547.pdf.txta60a62b40b94271d1ac7c644078cff56MD52THUMBNAIL000392547.pdf.jpg000392547.pdf.jpgGenerated Thumbnailimage/jpeg2162http://www.lume.ufrgs.br/bitstream/10183/27592/3/000392547.pdf.jpg01948b05e3618bc6de23bf7752df195cMD5310183/275922021-06-13 04:30:46.323312oai:www.lume.ufrgs.br:10183/27592Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-13T07:30:46Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Information geometric similarity measurement for near-random stochastic processes
title Information geometric similarity measurement for near-random stochastic processes
spellingShingle Information geometric similarity measurement for near-random stochastic processes
Dodson, C.T.J.
Matemática
Gamma models
Information geometry
Multisymbol sequences
Random
Search
Stochastic process
title_short Information geometric similarity measurement for near-random stochastic processes
title_full Information geometric similarity measurement for near-random stochastic processes
title_fullStr Information geometric similarity measurement for near-random stochastic processes
title_full_unstemmed Information geometric similarity measurement for near-random stochastic processes
title_sort Information geometric similarity measurement for near-random stochastic processes
author Dodson, C.T.J.
author_facet Dodson, C.T.J.
Scharcanski, Jacob
author_role author
author2 Scharcanski, Jacob
author2_role author
dc.contributor.author.fl_str_mv Dodson, C.T.J.
Scharcanski, Jacob
dc.subject.por.fl_str_mv Matemática
topic Matemática
Gamma models
Information geometry
Multisymbol sequences
Random
Search
Stochastic process
dc.subject.eng.fl_str_mv Gamma models
Information geometry
Multisymbol sequences
Random
Search
Stochastic process
description We outline the information-theoretic differential geometry of gamma distributions, which contain exponential distributions as a special case, and log-gamma distributions. Our arguments support the opinion that these distributions have a natural role in representing departures from randomness, uniformity, and Gaussian behavior in stochastic processes. We show also how the information geometry provides a surprisingly tractable Riemannian manifold and product spaces thereof, on which may be represented the evolution of a stochastic process, or the comparison of different processes, by means of well-founded maximum likelihood parameter estimation. Our model incorporates possible correlations among parameters. We discuss applications and provide some illustrations from a recent study of amino acid self-clustering in protein sequences; we provide also some results from simulations for multisymbol sequences.
publishDate 2003
dc.date.issued.fl_str_mv 2003
dc.date.accessioned.fl_str_mv 2011-01-29T06:00:26Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/27592
dc.identifier.issn.pt_BR.fl_str_mv 1083-4427
dc.identifier.nrb.pt_BR.fl_str_mv 000392547
identifier_str_mv 1083-4427
000392547
url http://hdl.handle.net/10183/27592
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv IEEE transactions on systems, man, and cybernetics. A, Systems and humans. New York. Vol. 33, No. 4 (2003), p. 435-440
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/27592/1/000392547.pdf
http://www.lume.ufrgs.br/bitstream/10183/27592/2/000392547.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/27592/3/000392547.pdf.jpg
bitstream.checksum.fl_str_mv 4463dc98d4d64109a8a1f986ddc6a8cf
a60a62b40b94271d1ac7c644078cff56
01948b05e3618bc6de23bf7752df195c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447422096113664