Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/237160 |
Resumo: | Background: Changes in soluble amyloid-beta (Aβ) levels in cerebrospinal fluid (CSF) are detectable at early preclinical stages of Alzheimer’s disease (AD). However, whether Aβ levels can predict downstream AD pathological features in cognitively unimpaired (CU) individuals remains unclear. With this in mind, we aimed at investigating whether a combination of soluble Aβ isoforms can predict tau pathology (T+) and neurodegeneration (N+) positivity. Methods: We used CSF measurements of three soluble Aβ peptides (Aβ1–38, Aβ1–40 and Aβ1–42) in CU individuals (n = 318) as input features in machine learning (ML) models aiming at predicting T+ and N+. Input data was used for building 2046 tuned predictive ML models with a nested cross-validation technique. Additionally, proteomics data was employed to investigate the functional enrichment of biological processes altered in T+ and N+ individuals. Results: Our findings indicate that Aβ isoforms can predict T+ and N+ with an area under the curve (AUC) of 0.929 and 0.936, respectively. Additionally, proteomics analysis identified 17 differentially expressed proteins (DEPs) in individuals wrongly classified by our ML model. More specifically, enrichment analysis of gene ontology biological processes revealed an upregulation in myelinization and glucose metabolism-related processes in CU individuals wrongly predicted as T+. A significant enrichment of DEPs in pathways including biosynthesis of amino acids, glycolysis/gluconeogenesis, carbon metabolism, cell adhesion molecules and prion disease was also observed. Conclusions: Our results demonstrate that, by applying a refined ML analysis, a combination of Aβ isoforms can predict T+ and N+ with a high AUC. CSF proteomics analysis highlighted a promising group of proteins that can be further explored for improving T+ and N+ prediction. |
id |
UFRGS-2_4fe191ee91129a662344d956ba9372c3 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/237160 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Povala, GuilhermeBellaver, BrunaDe Bastiani, Marco AntônioBrum, Wagner ScheerenFerreira, Pâmela Cristina LukasewiczBieger, AndreiPascoal, Tharick AliBenedet, Andréa L.Souza, Diogo Onofre Gomes deAraújo, Ricardo Matsumura deZatt, BrunoRosa Neto, PedroZimmer, Eduardo Rigon2022-04-13T04:51:39Z20212045-3701http://hdl.handle.net/10183/237160001138460Background: Changes in soluble amyloid-beta (Aβ) levels in cerebrospinal fluid (CSF) are detectable at early preclinical stages of Alzheimer’s disease (AD). However, whether Aβ levels can predict downstream AD pathological features in cognitively unimpaired (CU) individuals remains unclear. With this in mind, we aimed at investigating whether a combination of soluble Aβ isoforms can predict tau pathology (T+) and neurodegeneration (N+) positivity. Methods: We used CSF measurements of three soluble Aβ peptides (Aβ1–38, Aβ1–40 and Aβ1–42) in CU individuals (n = 318) as input features in machine learning (ML) models aiming at predicting T+ and N+. Input data was used for building 2046 tuned predictive ML models with a nested cross-validation technique. Additionally, proteomics data was employed to investigate the functional enrichment of biological processes altered in T+ and N+ individuals. Results: Our findings indicate that Aβ isoforms can predict T+ and N+ with an area under the curve (AUC) of 0.929 and 0.936, respectively. Additionally, proteomics analysis identified 17 differentially expressed proteins (DEPs) in individuals wrongly classified by our ML model. More specifically, enrichment analysis of gene ontology biological processes revealed an upregulation in myelinization and glucose metabolism-related processes in CU individuals wrongly predicted as T+. A significant enrichment of DEPs in pathways including biosynthesis of amino acids, glycolysis/gluconeogenesis, carbon metabolism, cell adhesion molecules and prion disease was also observed. Conclusions: Our results demonstrate that, by applying a refined ML analysis, a combination of Aβ isoforms can predict T+ and N+ with a high AUC. CSF proteomics analysis highlighted a promising group of proteins that can be further explored for improving T+ and N+ prediction.application/pdfengCell & bioscience. London. Vol. 11 (2021), 204, 13 p.Peptídeos beta-amilóidesLíquido cefalorraquidianoIsoformas de proteínasTauopatiasDoença de AlzheimerBiomarcadoresAlzheimer’s diseaseAmyloid-betaTau pathologyNeurodegenerationMachine learningProteomicsSoluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathologyEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001138460.pdf.txt001138460.pdf.txtExtracted Texttext/plain51242http://www.lume.ufrgs.br/bitstream/10183/237160/2/001138460.pdf.txt2203a4896964ddc9dff091183e49cd1fMD52ORIGINAL001138460.pdfTexto completo (inglês)application/pdf4098638http://www.lume.ufrgs.br/bitstream/10183/237160/1/001138460.pdf82e7228a928d0ea4fb81b0e4f1fb556cMD5110183/2371602024-02-17 05:55:44.143445oai:www.lume.ufrgs.br:10183/237160Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2024-02-17T07:55:44Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology |
title |
Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology |
spellingShingle |
Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology Povala, Guilherme Peptídeos beta-amilóides Líquido cefalorraquidiano Isoformas de proteínas Tauopatias Doença de Alzheimer Biomarcadores Alzheimer’s disease Amyloid-beta Tau pathology Neurodegeneration Machine learning Proteomics |
title_short |
Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology |
title_full |
Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology |
title_fullStr |
Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology |
title_full_unstemmed |
Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology |
title_sort |
Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology |
author |
Povala, Guilherme |
author_facet |
Povala, Guilherme Bellaver, Bruna De Bastiani, Marco Antônio Brum, Wagner Scheeren Ferreira, Pâmela Cristina Lukasewicz Bieger, Andrei Pascoal, Tharick Ali Benedet, Andréa L. Souza, Diogo Onofre Gomes de Araújo, Ricardo Matsumura de Zatt, Bruno Rosa Neto, Pedro Zimmer, Eduardo Rigon |
author_role |
author |
author2 |
Bellaver, Bruna De Bastiani, Marco Antônio Brum, Wagner Scheeren Ferreira, Pâmela Cristina Lukasewicz Bieger, Andrei Pascoal, Tharick Ali Benedet, Andréa L. Souza, Diogo Onofre Gomes de Araújo, Ricardo Matsumura de Zatt, Bruno Rosa Neto, Pedro Zimmer, Eduardo Rigon |
author2_role |
author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Povala, Guilherme Bellaver, Bruna De Bastiani, Marco Antônio Brum, Wagner Scheeren Ferreira, Pâmela Cristina Lukasewicz Bieger, Andrei Pascoal, Tharick Ali Benedet, Andréa L. Souza, Diogo Onofre Gomes de Araújo, Ricardo Matsumura de Zatt, Bruno Rosa Neto, Pedro Zimmer, Eduardo Rigon |
dc.subject.por.fl_str_mv |
Peptídeos beta-amilóides Líquido cefalorraquidiano Isoformas de proteínas Tauopatias Doença de Alzheimer Biomarcadores |
topic |
Peptídeos beta-amilóides Líquido cefalorraquidiano Isoformas de proteínas Tauopatias Doença de Alzheimer Biomarcadores Alzheimer’s disease Amyloid-beta Tau pathology Neurodegeneration Machine learning Proteomics |
dc.subject.eng.fl_str_mv |
Alzheimer’s disease Amyloid-beta Tau pathology Neurodegeneration Machine learning Proteomics |
description |
Background: Changes in soluble amyloid-beta (Aβ) levels in cerebrospinal fluid (CSF) are detectable at early preclinical stages of Alzheimer’s disease (AD). However, whether Aβ levels can predict downstream AD pathological features in cognitively unimpaired (CU) individuals remains unclear. With this in mind, we aimed at investigating whether a combination of soluble Aβ isoforms can predict tau pathology (T+) and neurodegeneration (N+) positivity. Methods: We used CSF measurements of three soluble Aβ peptides (Aβ1–38, Aβ1–40 and Aβ1–42) in CU individuals (n = 318) as input features in machine learning (ML) models aiming at predicting T+ and N+. Input data was used for building 2046 tuned predictive ML models with a nested cross-validation technique. Additionally, proteomics data was employed to investigate the functional enrichment of biological processes altered in T+ and N+ individuals. Results: Our findings indicate that Aβ isoforms can predict T+ and N+ with an area under the curve (AUC) of 0.929 and 0.936, respectively. Additionally, proteomics analysis identified 17 differentially expressed proteins (DEPs) in individuals wrongly classified by our ML model. More specifically, enrichment analysis of gene ontology biological processes revealed an upregulation in myelinization and glucose metabolism-related processes in CU individuals wrongly predicted as T+. A significant enrichment of DEPs in pathways including biosynthesis of amino acids, glycolysis/gluconeogenesis, carbon metabolism, cell adhesion molecules and prion disease was also observed. Conclusions: Our results demonstrate that, by applying a refined ML analysis, a combination of Aβ isoforms can predict T+ and N+ with a high AUC. CSF proteomics analysis highlighted a promising group of proteins that can be further explored for improving T+ and N+ prediction. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021 |
dc.date.accessioned.fl_str_mv |
2022-04-13T04:51:39Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/237160 |
dc.identifier.issn.pt_BR.fl_str_mv |
2045-3701 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001138460 |
identifier_str_mv |
2045-3701 001138460 |
url |
http://hdl.handle.net/10183/237160 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Cell & bioscience. London. Vol. 11 (2021), 204, 13 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/237160/2/001138460.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/237160/1/001138460.pdf |
bitstream.checksum.fl_str_mv |
2203a4896964ddc9dff091183e49cd1f 82e7228a928d0ea4fb81b0e4f1fb556c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br |
_version_ |
1817725132064423936 |