Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology

Detalhes bibliográficos
Autor(a) principal: Povala, Guilherme
Data de Publicação: 2021
Outros Autores: Bellaver, Bruna, De Bastiani, Marco Antônio, Brum, Wagner Scheeren, Ferreira, Pâmela Cristina Lukasewicz, Bieger, Andrei, Pascoal, Tharick Ali, Benedet, Andréa L., Souza, Diogo Onofre Gomes de, Araújo, Ricardo Matsumura de, Zatt, Bruno, Rosa Neto, Pedro, Zimmer, Eduardo Rigon
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/237160
Resumo: Background: Changes in soluble amyloid-beta (Aβ) levels in cerebrospinal fluid (CSF) are detectable at early preclinical stages of Alzheimer’s disease (AD). However, whether Aβ levels can predict downstream AD pathological features in cognitively unimpaired (CU) individuals remains unclear. With this in mind, we aimed at investigating whether a combination of soluble Aβ isoforms can predict tau pathology (T+) and neurodegeneration (N+) positivity. Methods: We used CSF measurements of three soluble Aβ peptides (Aβ1–38, Aβ1–40 and Aβ1–42) in CU individuals (n = 318) as input features in machine learning (ML) models aiming at predicting T+ and N+. Input data was used for building 2046 tuned predictive ML models with a nested cross-validation technique. Additionally, proteomics data was employed to investigate the functional enrichment of biological processes altered in T+ and N+ individuals. Results: Our findings indicate that Aβ isoforms can predict T+ and N+ with an area under the curve (AUC) of 0.929 and 0.936, respectively. Additionally, proteomics analysis identified 17 differentially expressed proteins (DEPs) in individuals wrongly classified by our ML model. More specifically, enrichment analysis of gene ontology biological processes revealed an upregulation in myelinization and glucose metabolism-related processes in CU individuals wrongly predicted as T+. A significant enrichment of DEPs in pathways including biosynthesis of amino acids, glycolysis/gluconeogenesis, carbon metabolism, cell adhesion molecules and prion disease was also observed. Conclusions: Our results demonstrate that, by applying a refined ML analysis, a combination of Aβ isoforms can predict T+ and N+ with a high AUC. CSF proteomics analysis highlighted a promising group of proteins that can be further explored for improving T+ and N+ prediction.
id UFRGS-2_4fe191ee91129a662344d956ba9372c3
oai_identifier_str oai:www.lume.ufrgs.br:10183/237160
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Povala, GuilhermeBellaver, BrunaDe Bastiani, Marco AntônioBrum, Wagner ScheerenFerreira, Pâmela Cristina LukasewiczBieger, AndreiPascoal, Tharick AliBenedet, Andréa L.Souza, Diogo Onofre Gomes deAraújo, Ricardo Matsumura deZatt, BrunoRosa Neto, PedroZimmer, Eduardo Rigon2022-04-13T04:51:39Z20212045-3701http://hdl.handle.net/10183/237160001138460Background: Changes in soluble amyloid-beta (Aβ) levels in cerebrospinal fluid (CSF) are detectable at early preclinical stages of Alzheimer’s disease (AD). However, whether Aβ levels can predict downstream AD pathological features in cognitively unimpaired (CU) individuals remains unclear. With this in mind, we aimed at investigating whether a combination of soluble Aβ isoforms can predict tau pathology (T+) and neurodegeneration (N+) positivity. Methods: We used CSF measurements of three soluble Aβ peptides (Aβ1–38, Aβ1–40 and Aβ1–42) in CU individuals (n = 318) as input features in machine learning (ML) models aiming at predicting T+ and N+. Input data was used for building 2046 tuned predictive ML models with a nested cross-validation technique. Additionally, proteomics data was employed to investigate the functional enrichment of biological processes altered in T+ and N+ individuals. Results: Our findings indicate that Aβ isoforms can predict T+ and N+ with an area under the curve (AUC) of 0.929 and 0.936, respectively. Additionally, proteomics analysis identified 17 differentially expressed proteins (DEPs) in individuals wrongly classified by our ML model. More specifically, enrichment analysis of gene ontology biological processes revealed an upregulation in myelinization and glucose metabolism-related processes in CU individuals wrongly predicted as T+. A significant enrichment of DEPs in pathways including biosynthesis of amino acids, glycolysis/gluconeogenesis, carbon metabolism, cell adhesion molecules and prion disease was also observed. Conclusions: Our results demonstrate that, by applying a refined ML analysis, a combination of Aβ isoforms can predict T+ and N+ with a high AUC. CSF proteomics analysis highlighted a promising group of proteins that can be further explored for improving T+ and N+ prediction.application/pdfengCell & bioscience. London. Vol. 11 (2021), 204, 13 p.Peptídeos beta-amilóidesLíquido cefalorraquidianoIsoformas de proteínasTauopatiasDoença de AlzheimerBiomarcadoresAlzheimer’s diseaseAmyloid-betaTau pathologyNeurodegenerationMachine learningProteomicsSoluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathologyEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001138460.pdf.txt001138460.pdf.txtExtracted Texttext/plain51242http://www.lume.ufrgs.br/bitstream/10183/237160/2/001138460.pdf.txt2203a4896964ddc9dff091183e49cd1fMD52ORIGINAL001138460.pdfTexto completo (inglês)application/pdf4098638http://www.lume.ufrgs.br/bitstream/10183/237160/1/001138460.pdf82e7228a928d0ea4fb81b0e4f1fb556cMD5110183/2371602024-02-17 05:55:44.143445oai:www.lume.ufrgs.br:10183/237160Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2024-02-17T07:55:44Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology
title Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology
spellingShingle Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology
Povala, Guilherme
Peptídeos beta-amilóides
Líquido cefalorraquidiano
Isoformas de proteínas
Tauopatias
Doença de Alzheimer
Biomarcadores
Alzheimer’s disease
Amyloid-beta
Tau pathology
Neurodegeneration
Machine learning
Proteomics
title_short Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology
title_full Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology
title_fullStr Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology
title_full_unstemmed Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology
title_sort Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology
author Povala, Guilherme
author_facet Povala, Guilherme
Bellaver, Bruna
De Bastiani, Marco Antônio
Brum, Wagner Scheeren
Ferreira, Pâmela Cristina Lukasewicz
Bieger, Andrei
Pascoal, Tharick Ali
Benedet, Andréa L.
Souza, Diogo Onofre Gomes de
Araújo, Ricardo Matsumura de
Zatt, Bruno
Rosa Neto, Pedro
Zimmer, Eduardo Rigon
author_role author
author2 Bellaver, Bruna
De Bastiani, Marco Antônio
Brum, Wagner Scheeren
Ferreira, Pâmela Cristina Lukasewicz
Bieger, Andrei
Pascoal, Tharick Ali
Benedet, Andréa L.
Souza, Diogo Onofre Gomes de
Araújo, Ricardo Matsumura de
Zatt, Bruno
Rosa Neto, Pedro
Zimmer, Eduardo Rigon
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Povala, Guilherme
Bellaver, Bruna
De Bastiani, Marco Antônio
Brum, Wagner Scheeren
Ferreira, Pâmela Cristina Lukasewicz
Bieger, Andrei
Pascoal, Tharick Ali
Benedet, Andréa L.
Souza, Diogo Onofre Gomes de
Araújo, Ricardo Matsumura de
Zatt, Bruno
Rosa Neto, Pedro
Zimmer, Eduardo Rigon
dc.subject.por.fl_str_mv Peptídeos beta-amilóides
Líquido cefalorraquidiano
Isoformas de proteínas
Tauopatias
Doença de Alzheimer
Biomarcadores
topic Peptídeos beta-amilóides
Líquido cefalorraquidiano
Isoformas de proteínas
Tauopatias
Doença de Alzheimer
Biomarcadores
Alzheimer’s disease
Amyloid-beta
Tau pathology
Neurodegeneration
Machine learning
Proteomics
dc.subject.eng.fl_str_mv Alzheimer’s disease
Amyloid-beta
Tau pathology
Neurodegeneration
Machine learning
Proteomics
description Background: Changes in soluble amyloid-beta (Aβ) levels in cerebrospinal fluid (CSF) are detectable at early preclinical stages of Alzheimer’s disease (AD). However, whether Aβ levels can predict downstream AD pathological features in cognitively unimpaired (CU) individuals remains unclear. With this in mind, we aimed at investigating whether a combination of soluble Aβ isoforms can predict tau pathology (T+) and neurodegeneration (N+) positivity. Methods: We used CSF measurements of three soluble Aβ peptides (Aβ1–38, Aβ1–40 and Aβ1–42) in CU individuals (n = 318) as input features in machine learning (ML) models aiming at predicting T+ and N+. Input data was used for building 2046 tuned predictive ML models with a nested cross-validation technique. Additionally, proteomics data was employed to investigate the functional enrichment of biological processes altered in T+ and N+ individuals. Results: Our findings indicate that Aβ isoforms can predict T+ and N+ with an area under the curve (AUC) of 0.929 and 0.936, respectively. Additionally, proteomics analysis identified 17 differentially expressed proteins (DEPs) in individuals wrongly classified by our ML model. More specifically, enrichment analysis of gene ontology biological processes revealed an upregulation in myelinization and glucose metabolism-related processes in CU individuals wrongly predicted as T+. A significant enrichment of DEPs in pathways including biosynthesis of amino acids, glycolysis/gluconeogenesis, carbon metabolism, cell adhesion molecules and prion disease was also observed. Conclusions: Our results demonstrate that, by applying a refined ML analysis, a combination of Aβ isoforms can predict T+ and N+ with a high AUC. CSF proteomics analysis highlighted a promising group of proteins that can be further explored for improving T+ and N+ prediction.
publishDate 2021
dc.date.issued.fl_str_mv 2021
dc.date.accessioned.fl_str_mv 2022-04-13T04:51:39Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/237160
dc.identifier.issn.pt_BR.fl_str_mv 2045-3701
dc.identifier.nrb.pt_BR.fl_str_mv 001138460
identifier_str_mv 2045-3701
001138460
url http://hdl.handle.net/10183/237160
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Cell & bioscience. London. Vol. 11 (2021), 204, 13 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/237160/2/001138460.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/237160/1/001138460.pdf
bitstream.checksum.fl_str_mv 2203a4896964ddc9dff091183e49cd1f
82e7228a928d0ea4fb81b0e4f1fb556c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br
_version_ 1817725132064423936