Duality symmetry in the schwarz-sen model
Autor(a) principal: | |
---|---|
Data de Publicação: | 1997 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/103704 |
Resumo: | The continuous extension of the discrete duality symmetry of the Schwarz-Sen model is studied. The corresponding infinitesimal generator Q turns out to be local, gauge invariant, and metric independent. Furthermore, Q commutes with all the conformal group generators. We also show that Q is equivalent to the nonlocal duality transformation generator found in the Hamiltonian formulation of Maxwell theory. We next consider the Batalin-Fradkin-Vilkovisky formalism for the Maxwell theory and demonstrate that requiring a local duality transformation leads us to the Schwarz-Sen formulation. The partition functions are shown to be the same, which implies the quantum equivalence of the two approaches. [S0556-2821(97)06522-3] |
id |
UFRGS-2_5c2bd33ac52ea96ea8f56701ec452adb |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/103704 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Girotti, Horacio OscarGomes, MarceloRivelles, Victor O.Silva, Adilson J. da2014-09-24T02:12:06Z19970556-2821http://hdl.handle.net/10183/103704000152450The continuous extension of the discrete duality symmetry of the Schwarz-Sen model is studied. The corresponding infinitesimal generator Q turns out to be local, gauge invariant, and metric independent. Furthermore, Q commutes with all the conformal group generators. We also show that Q is equivalent to the nonlocal duality transformation generator found in the Hamiltonian formulation of Maxwell theory. We next consider the Batalin-Fradkin-Vilkovisky formalism for the Maxwell theory and demonstrate that requiring a local duality transformation leads us to the Schwarz-Sen formulation. The partition functions are shown to be the same, which implies the quantum equivalence of the two approaches. [S0556-2821(97)06522-3]application/pdfengPhysical review. D, Particles and fields. Woodbury. Vol. 56, no. 10 (Nov. 1997), p. 6615-6618Fisica de particulas elementares e camposTeoria de cordasSimetrias : Teoria quanticaSimetriasDuality symmetry in the schwarz-sen modelEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000152450.pdf000152450.pdfTexto completo (inglês)application/pdf77354http://www.lume.ufrgs.br/bitstream/10183/103704/1/000152450.pdf8d851f8172546be7db656a589f4b944eMD51TEXT000152450.pdf.txt000152450.pdf.txtExtracted Texttext/plain13463http://www.lume.ufrgs.br/bitstream/10183/103704/2/000152450.pdf.txt3aaa5e0819a0729554c9196fda9fc2b2MD52THUMBNAIL000152450.pdf.jpg000152450.pdf.jpgGenerated Thumbnailimage/jpeg2000http://www.lume.ufrgs.br/bitstream/10183/103704/3/000152450.pdf.jpg3b94d5b437686d76536dd26a1ce59b68MD5310183/1037042023-08-02 03:34:34.737654oai:www.lume.ufrgs.br:10183/103704Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-08-02T06:34:34Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Duality symmetry in the schwarz-sen model |
title |
Duality symmetry in the schwarz-sen model |
spellingShingle |
Duality symmetry in the schwarz-sen model Girotti, Horacio Oscar Fisica de particulas elementares e campos Teoria de cordas Simetrias : Teoria quantica Simetrias |
title_short |
Duality symmetry in the schwarz-sen model |
title_full |
Duality symmetry in the schwarz-sen model |
title_fullStr |
Duality symmetry in the schwarz-sen model |
title_full_unstemmed |
Duality symmetry in the schwarz-sen model |
title_sort |
Duality symmetry in the schwarz-sen model |
author |
Girotti, Horacio Oscar |
author_facet |
Girotti, Horacio Oscar Gomes, Marcelo Rivelles, Victor O. Silva, Adilson J. da |
author_role |
author |
author2 |
Gomes, Marcelo Rivelles, Victor O. Silva, Adilson J. da |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Girotti, Horacio Oscar Gomes, Marcelo Rivelles, Victor O. Silva, Adilson J. da |
dc.subject.por.fl_str_mv |
Fisica de particulas elementares e campos Teoria de cordas Simetrias : Teoria quantica Simetrias |
topic |
Fisica de particulas elementares e campos Teoria de cordas Simetrias : Teoria quantica Simetrias |
description |
The continuous extension of the discrete duality symmetry of the Schwarz-Sen model is studied. The corresponding infinitesimal generator Q turns out to be local, gauge invariant, and metric independent. Furthermore, Q commutes with all the conformal group generators. We also show that Q is equivalent to the nonlocal duality transformation generator found in the Hamiltonian formulation of Maxwell theory. We next consider the Batalin-Fradkin-Vilkovisky formalism for the Maxwell theory and demonstrate that requiring a local duality transformation leads us to the Schwarz-Sen formulation. The partition functions are shown to be the same, which implies the quantum equivalence of the two approaches. [S0556-2821(97)06522-3] |
publishDate |
1997 |
dc.date.issued.fl_str_mv |
1997 |
dc.date.accessioned.fl_str_mv |
2014-09-24T02:12:06Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/103704 |
dc.identifier.issn.pt_BR.fl_str_mv |
0556-2821 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000152450 |
identifier_str_mv |
0556-2821 000152450 |
url |
http://hdl.handle.net/10183/103704 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Physical review. D, Particles and fields. Woodbury. Vol. 56, no. 10 (Nov. 1997), p. 6615-6618 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/103704/1/000152450.pdf http://www.lume.ufrgs.br/bitstream/10183/103704/2/000152450.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/103704/3/000152450.pdf.jpg |
bitstream.checksum.fl_str_mv |
8d851f8172546be7db656a589f4b944e 3aaa5e0819a0729554c9196fda9fc2b2 3b94d5b437686d76536dd26a1ce59b68 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447560812232704 |