Duality symmetry in the schwarz-sen model

Detalhes bibliográficos
Autor(a) principal: Girotti, Horacio Oscar
Data de Publicação: 1997
Outros Autores: Gomes, Marcelo, Rivelles, Victor O., Silva, Adilson J. da
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/103704
Resumo: The continuous extension of the discrete duality symmetry of the Schwarz-Sen model is studied. The corresponding infinitesimal generator Q turns out to be local, gauge invariant, and metric independent. Furthermore, Q commutes with all the conformal group generators. We also show that Q is equivalent to the nonlocal duality transformation generator found in the Hamiltonian formulation of Maxwell theory. We next consider the Batalin-Fradkin-Vilkovisky formalism for the Maxwell theory and demonstrate that requiring a local duality transformation leads us to the Schwarz-Sen formulation. The partition functions are shown to be the same, which implies the quantum equivalence of the two approaches. [S0556-2821(97)06522-3]
id UFRGS-2_5c2bd33ac52ea96ea8f56701ec452adb
oai_identifier_str oai:www.lume.ufrgs.br:10183/103704
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Girotti, Horacio OscarGomes, MarceloRivelles, Victor O.Silva, Adilson J. da2014-09-24T02:12:06Z19970556-2821http://hdl.handle.net/10183/103704000152450The continuous extension of the discrete duality symmetry of the Schwarz-Sen model is studied. The corresponding infinitesimal generator Q turns out to be local, gauge invariant, and metric independent. Furthermore, Q commutes with all the conformal group generators. We also show that Q is equivalent to the nonlocal duality transformation generator found in the Hamiltonian formulation of Maxwell theory. We next consider the Batalin-Fradkin-Vilkovisky formalism for the Maxwell theory and demonstrate that requiring a local duality transformation leads us to the Schwarz-Sen formulation. The partition functions are shown to be the same, which implies the quantum equivalence of the two approaches. [S0556-2821(97)06522-3]application/pdfengPhysical review. D, Particles and fields. Woodbury. Vol. 56, no. 10 (Nov. 1997), p. 6615-6618Fisica de particulas elementares e camposTeoria de cordasSimetrias : Teoria quanticaSimetriasDuality symmetry in the schwarz-sen modelEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000152450.pdf000152450.pdfTexto completo (inglês)application/pdf77354http://www.lume.ufrgs.br/bitstream/10183/103704/1/000152450.pdf8d851f8172546be7db656a589f4b944eMD51TEXT000152450.pdf.txt000152450.pdf.txtExtracted Texttext/plain13463http://www.lume.ufrgs.br/bitstream/10183/103704/2/000152450.pdf.txt3aaa5e0819a0729554c9196fda9fc2b2MD52THUMBNAIL000152450.pdf.jpg000152450.pdf.jpgGenerated Thumbnailimage/jpeg2000http://www.lume.ufrgs.br/bitstream/10183/103704/3/000152450.pdf.jpg3b94d5b437686d76536dd26a1ce59b68MD5310183/1037042023-08-02 03:34:34.737654oai:www.lume.ufrgs.br:10183/103704Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-08-02T06:34:34Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Duality symmetry in the schwarz-sen model
title Duality symmetry in the schwarz-sen model
spellingShingle Duality symmetry in the schwarz-sen model
Girotti, Horacio Oscar
Fisica de particulas elementares e campos
Teoria de cordas
Simetrias : Teoria quantica
Simetrias
title_short Duality symmetry in the schwarz-sen model
title_full Duality symmetry in the schwarz-sen model
title_fullStr Duality symmetry in the schwarz-sen model
title_full_unstemmed Duality symmetry in the schwarz-sen model
title_sort Duality symmetry in the schwarz-sen model
author Girotti, Horacio Oscar
author_facet Girotti, Horacio Oscar
Gomes, Marcelo
Rivelles, Victor O.
Silva, Adilson J. da
author_role author
author2 Gomes, Marcelo
Rivelles, Victor O.
Silva, Adilson J. da
author2_role author
author
author
dc.contributor.author.fl_str_mv Girotti, Horacio Oscar
Gomes, Marcelo
Rivelles, Victor O.
Silva, Adilson J. da
dc.subject.por.fl_str_mv Fisica de particulas elementares e campos
Teoria de cordas
Simetrias : Teoria quantica
Simetrias
topic Fisica de particulas elementares e campos
Teoria de cordas
Simetrias : Teoria quantica
Simetrias
description The continuous extension of the discrete duality symmetry of the Schwarz-Sen model is studied. The corresponding infinitesimal generator Q turns out to be local, gauge invariant, and metric independent. Furthermore, Q commutes with all the conformal group generators. We also show that Q is equivalent to the nonlocal duality transformation generator found in the Hamiltonian formulation of Maxwell theory. We next consider the Batalin-Fradkin-Vilkovisky formalism for the Maxwell theory and demonstrate that requiring a local duality transformation leads us to the Schwarz-Sen formulation. The partition functions are shown to be the same, which implies the quantum equivalence of the two approaches. [S0556-2821(97)06522-3]
publishDate 1997
dc.date.issued.fl_str_mv 1997
dc.date.accessioned.fl_str_mv 2014-09-24T02:12:06Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/103704
dc.identifier.issn.pt_BR.fl_str_mv 0556-2821
dc.identifier.nrb.pt_BR.fl_str_mv 000152450
identifier_str_mv 0556-2821
000152450
url http://hdl.handle.net/10183/103704
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. D, Particles and fields. Woodbury. Vol. 56, no. 10 (Nov. 1997), p. 6615-6618
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/103704/1/000152450.pdf
http://www.lume.ufrgs.br/bitstream/10183/103704/2/000152450.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/103704/3/000152450.pdf.jpg
bitstream.checksum.fl_str_mv 8d851f8172546be7db656a589f4b944e
3aaa5e0819a0729554c9196fda9fc2b2
3b94d5b437686d76536dd26a1ce59b68
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447560812232704