A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease

Detalhes bibliográficos
Autor(a) principal: Westbroek, Wendy
Data de Publicação: 2016
Outros Autores: Nguyen, Matthew, Siebert, Marina, Lindstrom, Taylor, Burnett, Robert A., Aflaki, Elma, Jung, Olive, Tamargo, Rafael, Rodriguez-Gil, Jorge L., Acosta, Walter, Hendrix, An, Behre, Bahafta, Tayebi, Nahid, Fujiwara, Hideji, Sidhu, Rohini, Renvoise, Benoit, Ginns, Edward I., Dutra, Amalia, Pak, Evgenia, Cramer, Carole, Ory, Daniel S., Pavan, William J., Sidransky, Ellen A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/216691
Resumo: Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1. Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1. To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba−/− mice and the control littermate (gba+/+) by infecting differentiated primary cortical neurons in culture with an EF1α-SV40T lentivirus. Immortalized gba−/− neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba+/+ neurons. This null allele gba−/− mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies.
id UFRGS-2_6cb9a1e0653490c8fecca9f3108d482d
oai_identifier_str oai:www.lume.ufrgs.br:10183/216691
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Westbroek, WendyNguyen, MatthewSiebert, MarinaLindstrom, TaylorBurnett, Robert A.Aflaki, ElmaJung, OliveTamargo, RafaelRodriguez-Gil, Jorge L.Acosta, WalterHendrix, AnBehre, BahaftaTayebi, NahidFujiwara, HidejiSidhu, RohiniRenvoise, BenoitGinns, Edward I.Dutra, AmaliaPak, EvgeniaCramer, CaroleOry, Daniel S.Pavan, William J.Sidransky, Ellen A.2020-12-18T04:13:26Z20161754-8403http://hdl.handle.net/10183/216691001046453Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1. Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1. To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba−/− mice and the control littermate (gba+/+) by infecting differentiated primary cortical neurons in culture with an EF1α-SV40T lentivirus. Immortalized gba−/− neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba+/+ neurons. This null allele gba−/− mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies.application/pdfengDisease models and mechanisms. Cambridge. Vol. 9 (2016), p. 769-778Doença de GaucherGlucosilceramidaseNeurôniosGlucosilceramidasGaucher diseaseGlucocerebrosidaseNeuronGlucosylceramideGlucosylsphingosineA new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher diseaseEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001046453.pdf.txt001046453.pdf.txtExtracted Texttext/plain64372http://www.lume.ufrgs.br/bitstream/10183/216691/2/001046453.pdf.txtbaa8e0fc1d4c5c4995db0fca4e8ee334MD52ORIGINAL001046453.pdfTexto completo (inglês)application/pdf3424951http://www.lume.ufrgs.br/bitstream/10183/216691/1/001046453.pdfeaba5d73b97694f48b539f433cbce044MD5110183/2166912024-12-06 07:42:16.736014oai:www.lume.ufrgs.br:10183/216691Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2024-12-06T09:42:16Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease
title A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease
spellingShingle A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease
Westbroek, Wendy
Doença de Gaucher
Glucosilceramidase
Neurônios
Glucosilceramidas
Gaucher disease
Glucocerebrosidase
Neuron
Glucosylceramide
Glucosylsphingosine
title_short A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease
title_full A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease
title_fullStr A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease
title_full_unstemmed A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease
title_sort A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease
author Westbroek, Wendy
author_facet Westbroek, Wendy
Nguyen, Matthew
Siebert, Marina
Lindstrom, Taylor
Burnett, Robert A.
Aflaki, Elma
Jung, Olive
Tamargo, Rafael
Rodriguez-Gil, Jorge L.
Acosta, Walter
Hendrix, An
Behre, Bahafta
Tayebi, Nahid
Fujiwara, Hideji
Sidhu, Rohini
Renvoise, Benoit
Ginns, Edward I.
Dutra, Amalia
Pak, Evgenia
Cramer, Carole
Ory, Daniel S.
Pavan, William J.
Sidransky, Ellen A.
author_role author
author2 Nguyen, Matthew
Siebert, Marina
Lindstrom, Taylor
Burnett, Robert A.
Aflaki, Elma
Jung, Olive
Tamargo, Rafael
Rodriguez-Gil, Jorge L.
Acosta, Walter
Hendrix, An
Behre, Bahafta
Tayebi, Nahid
Fujiwara, Hideji
Sidhu, Rohini
Renvoise, Benoit
Ginns, Edward I.
Dutra, Amalia
Pak, Evgenia
Cramer, Carole
Ory, Daniel S.
Pavan, William J.
Sidransky, Ellen A.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Westbroek, Wendy
Nguyen, Matthew
Siebert, Marina
Lindstrom, Taylor
Burnett, Robert A.
Aflaki, Elma
Jung, Olive
Tamargo, Rafael
Rodriguez-Gil, Jorge L.
Acosta, Walter
Hendrix, An
Behre, Bahafta
Tayebi, Nahid
Fujiwara, Hideji
Sidhu, Rohini
Renvoise, Benoit
Ginns, Edward I.
Dutra, Amalia
Pak, Evgenia
Cramer, Carole
Ory, Daniel S.
Pavan, William J.
Sidransky, Ellen A.
dc.subject.por.fl_str_mv Doença de Gaucher
Glucosilceramidase
Neurônios
Glucosilceramidas
topic Doença de Gaucher
Glucosilceramidase
Neurônios
Glucosilceramidas
Gaucher disease
Glucocerebrosidase
Neuron
Glucosylceramide
Glucosylsphingosine
dc.subject.eng.fl_str_mv Gaucher disease
Glucocerebrosidase
Neuron
Glucosylceramide
Glucosylsphingosine
description Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1. Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1. To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba−/− mice and the control littermate (gba+/+) by infecting differentiated primary cortical neurons in culture with an EF1α-SV40T lentivirus. Immortalized gba−/− neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba+/+ neurons. This null allele gba−/− mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies.
publishDate 2016
dc.date.issued.fl_str_mv 2016
dc.date.accessioned.fl_str_mv 2020-12-18T04:13:26Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/216691
dc.identifier.issn.pt_BR.fl_str_mv 1754-8403
dc.identifier.nrb.pt_BR.fl_str_mv 001046453
identifier_str_mv 1754-8403
001046453
url http://hdl.handle.net/10183/216691
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Disease models and mechanisms. Cambridge. Vol. 9 (2016), p. 769-778
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/216691/2/001046453.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/216691/1/001046453.pdf
bitstream.checksum.fl_str_mv baa8e0fc1d4c5c4995db0fca4e8ee334
eaba5d73b97694f48b539f433cbce044
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br
_version_ 1817725084230483968