Seasonal streamflow forecasting in South America's largest rivers

Detalhes bibliográficos
Autor(a) principal: Petry, Ingrid
Data de Publicação: 2023
Outros Autores: Fan, Fernando Mainardi, Siqueira, Vinícius Alencar, Collischonn, Walter, Paiva, Rodrigo Cauduro Dias de, Quedi, Erik Schmitt, Gama, Cléber Henrique Araújo, Silveira, Reinaldo Bomfim da, Freitas, Camila, Paranhos, Cassia Silmara Aver
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/274921
Resumo: Study region: South America large basins (>5000 km²). Study focus: This work represents a first assessment of seasonal streamflow forecasts in South America based on a continental-scale application of a large scale hydrologic-hydrodynamic model and ECMWF's seasonal forecasting system precipitation forecasts (SEAS5-SSF) with bias correction. Seasonal streamflow forecasts were evaluated against a reference model run. Forecast skill was estimated relative to the Ensemble Streamflow Prediction (ESP) method. New hydrological insights: We observed that bias correction was essential to obtain positive skill of SEAS5-SSF over ESP, which remained a hard to beat benchmark, especially in regions with high seasonality, and highly dependent on initial conditions. SEAS5-SSF skill was found to be dependent on initialization month, basin and lead time. Rivers where the skill is higher were Amazon, Araguaia, Tocantins and Paraná.
id UFRGS-2_7de2a923ca09aee44c2e5306d1af228b
oai_identifier_str oai:www.lume.ufrgs.br:10183/274921
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Petry, IngridFan, Fernando MainardiSiqueira, Vinícius AlencarCollischonn, WalterPaiva, Rodrigo Cauduro Dias deQuedi, Erik SchmittGama, Cléber Henrique AraújoSilveira, Reinaldo Bomfim daFreitas, CamilaParanhos, Cassia Silmara Aver2024-04-18T05:36:54Z20232214-5818http://hdl.handle.net/10183/274921001199905Study region: South America large basins (>5000 km²). Study focus: This work represents a first assessment of seasonal streamflow forecasts in South America based on a continental-scale application of a large scale hydrologic-hydrodynamic model and ECMWF's seasonal forecasting system precipitation forecasts (SEAS5-SSF) with bias correction. Seasonal streamflow forecasts were evaluated against a reference model run. Forecast skill was estimated relative to the Ensemble Streamflow Prediction (ESP) method. New hydrological insights: We observed that bias correction was essential to obtain positive skill of SEAS5-SSF over ESP, which remained a hard to beat benchmark, especially in regions with high seasonality, and highly dependent on initial conditions. SEAS5-SSF skill was found to be dependent on initialization month, basin and lead time. Rivers where the skill is higher were Amazon, Araguaia, Tocantins and Paraná.application/pdfengJournal of Hydrology : Regional Studies. Amsterdam. Vol. 49 (Oct. 2023), [Article] 101487, 22 p.PrecipitaçãoModelos hidrológicosPrevisao de cheiasPrevisão de vazõesPrevisão hidrológicaSeasonal streamflow forecast Bias correction South AmericaSeasonal streamflow forecasting in South America's largest riversEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001199905.pdf.txt001199905.pdf.txtExtracted Texttext/plain77977http://www.lume.ufrgs.br/bitstream/10183/274921/2/001199905.pdf.txt9207572803a657c72141242885bbb3aeMD52ORIGINAL001199905.pdfTexto completo (inglês)application/pdf26572935http://www.lume.ufrgs.br/bitstream/10183/274921/1/001199905.pdf47c30292c291b8aec54f060b2a3e2e83MD5110183/2749212024-04-21 06:18:29.493529oai:www.lume.ufrgs.br:10183/274921Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-04-21T09:18:29Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Seasonal streamflow forecasting in South America's largest rivers
title Seasonal streamflow forecasting in South America's largest rivers
spellingShingle Seasonal streamflow forecasting in South America's largest rivers
Petry, Ingrid
Precipitação
Modelos hidrológicos
Previsao de cheias
Previsão de vazões
Previsão hidrológica
Seasonal streamflow forecast Bias correction South America
title_short Seasonal streamflow forecasting in South America's largest rivers
title_full Seasonal streamflow forecasting in South America's largest rivers
title_fullStr Seasonal streamflow forecasting in South America's largest rivers
title_full_unstemmed Seasonal streamflow forecasting in South America's largest rivers
title_sort Seasonal streamflow forecasting in South America's largest rivers
author Petry, Ingrid
author_facet Petry, Ingrid
Fan, Fernando Mainardi
Siqueira, Vinícius Alencar
Collischonn, Walter
Paiva, Rodrigo Cauduro Dias de
Quedi, Erik Schmitt
Gama, Cléber Henrique Araújo
Silveira, Reinaldo Bomfim da
Freitas, Camila
Paranhos, Cassia Silmara Aver
author_role author
author2 Fan, Fernando Mainardi
Siqueira, Vinícius Alencar
Collischonn, Walter
Paiva, Rodrigo Cauduro Dias de
Quedi, Erik Schmitt
Gama, Cléber Henrique Araújo
Silveira, Reinaldo Bomfim da
Freitas, Camila
Paranhos, Cassia Silmara Aver
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Petry, Ingrid
Fan, Fernando Mainardi
Siqueira, Vinícius Alencar
Collischonn, Walter
Paiva, Rodrigo Cauduro Dias de
Quedi, Erik Schmitt
Gama, Cléber Henrique Araújo
Silveira, Reinaldo Bomfim da
Freitas, Camila
Paranhos, Cassia Silmara Aver
dc.subject.por.fl_str_mv Precipitação
Modelos hidrológicos
Previsao de cheias
Previsão de vazões
Previsão hidrológica
topic Precipitação
Modelos hidrológicos
Previsao de cheias
Previsão de vazões
Previsão hidrológica
Seasonal streamflow forecast Bias correction South America
dc.subject.eng.fl_str_mv Seasonal streamflow forecast Bias correction South America
description Study region: South America large basins (>5000 km²). Study focus: This work represents a first assessment of seasonal streamflow forecasts in South America based on a continental-scale application of a large scale hydrologic-hydrodynamic model and ECMWF's seasonal forecasting system precipitation forecasts (SEAS5-SSF) with bias correction. Seasonal streamflow forecasts were evaluated against a reference model run. Forecast skill was estimated relative to the Ensemble Streamflow Prediction (ESP) method. New hydrological insights: We observed that bias correction was essential to obtain positive skill of SEAS5-SSF over ESP, which remained a hard to beat benchmark, especially in regions with high seasonality, and highly dependent on initial conditions. SEAS5-SSF skill was found to be dependent on initialization month, basin and lead time. Rivers where the skill is higher were Amazon, Araguaia, Tocantins and Paraná.
publishDate 2023
dc.date.issued.fl_str_mv 2023
dc.date.accessioned.fl_str_mv 2024-04-18T05:36:54Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/274921
dc.identifier.issn.pt_BR.fl_str_mv 2214-5818
dc.identifier.nrb.pt_BR.fl_str_mv 001199905
identifier_str_mv 2214-5818
001199905
url http://hdl.handle.net/10183/274921
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Journal of Hydrology : Regional Studies. Amsterdam. Vol. 49 (Oct. 2023), [Article] 101487, 22 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/274921/2/001199905.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/274921/1/001199905.pdf
bitstream.checksum.fl_str_mv 9207572803a657c72141242885bbb3ae
47c30292c291b8aec54f060b2a3e2e83
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447858888835072