Estimation of the long memory parameter in nonstationary time series using semi-parametric and parametric methods

Detalhes bibliográficos
Autor(a) principal: Pasini, Bárbara Patricia Olbermann
Data de Publicação: 1999
Outros Autores: Lopes, Silvia Regina Costa, Reisen, Valderio Anselmo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/205072
Resumo: Recently, the study of time series has been focused on time series having the long memory property, that is, series in which the dependence between distant observations is not negligible. One model that shows properties of long memory is the ARF IM A(p, d, q) when the degree of differencing d is in the interval (0 .0 ,0.5), range where the process is stationary. In this work, we analyze the estimation of the degree d* in ARFIMA(O,d*,O) processes when d* > 0.5, that is, when the processes are nonstationary, but still have the property of long memory. We present a study, through simulations, for the estimators of d* with different semiparametric and parametric methods for nonstationary processes when d* belongs to the intervals (0.5, 1.0) and (1.0,1.5).
id UFRGS-2_81c4173b0bd6ce7872fabdde8ba650a4
oai_identifier_str oai:www.lume.ufrgs.br:10183/205072
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Pasini, Bárbara Patricia OlbermannLopes, Silvia Regina CostaReisen, Valderio Anselmo2020-01-30T04:09:15Z1999http://hdl.handle.net/10183/205072000289599Recently, the study of time series has been focused on time series having the long memory property, that is, series in which the dependence between distant observations is not negligible. One model that shows properties of long memory is the ARF IM A(p, d, q) when the degree of differencing d is in the interval (0 .0 ,0.5), range where the process is stationary. In this work, we analyze the estimation of the degree d* in ARFIMA(O,d*,O) processes when d* > 0.5, that is, when the processes are nonstationary, but still have the property of long memory. We present a study, through simulations, for the estimators of d* with different semiparametric and parametric methods for nonstationary processes when d* belongs to the intervals (0.5, 1.0) and (1.0,1.5).application/pdfengCadernos de matemática e estatística. Série A, Trabalho de pesquisa. Porto Alegre. N. 53 (nov. 1999), p. 1-17.Estatistica : EstimacaoSéries temporais : Processos ARFIMA : Parâmetro fracionário : EstimadoresEstimation of the long memory parameter in nonstationary time series using semi-parametric and parametric methodsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000289599.pdf.txt000289599.pdf.txtExtracted Texttext/plain0http://www.lume.ufrgs.br/bitstream/10183/205072/2/000289599.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD52ORIGINAL000289599.pdfTexto completo (inglês)application/pdf8114619http://www.lume.ufrgs.br/bitstream/10183/205072/1/000289599.pdffb4165efc80aefd5bd912b99a07b7e9aMD5110183/2050722021-06-26 04:38:28.71361oai:www.lume.ufrgs.br:10183/205072Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-26T07:38:28Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Estimation of the long memory parameter in nonstationary time series using semi-parametric and parametric methods
title Estimation of the long memory parameter in nonstationary time series using semi-parametric and parametric methods
spellingShingle Estimation of the long memory parameter in nonstationary time series using semi-parametric and parametric methods
Pasini, Bárbara Patricia Olbermann
Estatistica : Estimacao
Séries temporais : Processos ARFIMA : Parâmetro fracionário : Estimadores
title_short Estimation of the long memory parameter in nonstationary time series using semi-parametric and parametric methods
title_full Estimation of the long memory parameter in nonstationary time series using semi-parametric and parametric methods
title_fullStr Estimation of the long memory parameter in nonstationary time series using semi-parametric and parametric methods
title_full_unstemmed Estimation of the long memory parameter in nonstationary time series using semi-parametric and parametric methods
title_sort Estimation of the long memory parameter in nonstationary time series using semi-parametric and parametric methods
author Pasini, Bárbara Patricia Olbermann
author_facet Pasini, Bárbara Patricia Olbermann
Lopes, Silvia Regina Costa
Reisen, Valderio Anselmo
author_role author
author2 Lopes, Silvia Regina Costa
Reisen, Valderio Anselmo
author2_role author
author
dc.contributor.author.fl_str_mv Pasini, Bárbara Patricia Olbermann
Lopes, Silvia Regina Costa
Reisen, Valderio Anselmo
dc.subject.por.fl_str_mv Estatistica : Estimacao
Séries temporais : Processos ARFIMA : Parâmetro fracionário : Estimadores
topic Estatistica : Estimacao
Séries temporais : Processos ARFIMA : Parâmetro fracionário : Estimadores
description Recently, the study of time series has been focused on time series having the long memory property, that is, series in which the dependence between distant observations is not negligible. One model that shows properties of long memory is the ARF IM A(p, d, q) when the degree of differencing d is in the interval (0 .0 ,0.5), range where the process is stationary. In this work, we analyze the estimation of the degree d* in ARFIMA(O,d*,O) processes when d* > 0.5, that is, when the processes are nonstationary, but still have the property of long memory. We present a study, through simulations, for the estimators of d* with different semiparametric and parametric methods for nonstationary processes when d* belongs to the intervals (0.5, 1.0) and (1.0,1.5).
publishDate 1999
dc.date.issued.fl_str_mv 1999
dc.date.accessioned.fl_str_mv 2020-01-30T04:09:15Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/205072
dc.identifier.nrb.pt_BR.fl_str_mv 000289599
url http://hdl.handle.net/10183/205072
identifier_str_mv 000289599
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Cadernos de matemática e estatística. Série A, Trabalho de pesquisa. Porto Alegre. N. 53 (nov. 1999), p. 1-17.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/205072/2/000289599.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/205072/1/000289599.pdf
bitstream.checksum.fl_str_mv d41d8cd98f00b204e9800998ecf8427e
fb4165efc80aefd5bd912b99a07b7e9a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447705239945216