Condensation of degrees emerging through a first-order phase transition in classical random graphs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/198075 |
Resumo: | Due to their conceptual and mathematical simplicity, Erdös-Rényi or classical random graphs remain as a fundamental paradigm to model complex interacting systems in several areas. Although condensation phenomena have been widely considered in complex network theory, the condensation of degrees has hitherto eluded a careful study. Here we show that the degree statistics of the classical random graph model undergoes a first-order phase transition between a Poisson-like distribution and a condensed phase, the latter characterized by a large fraction of nodes having degrees in a limited sector of their configuration space. The mechanism underlying the first-order transition is discussed in light of standard concepts in statistical physics. We uncover the phase diagram characterizing the ensemble space of the model, and we evaluate the rate function governing the probability to observe a condensed state, which shows that condensation of degrees is a rare statistical event akin to similar condensation phenomena recently observed in several other systems. Monte Carlo simulations confirm the exactness of our theoretical results |
id |
UFRGS-2_8481b80edf207535dbf40c2be6153612 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/198075 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Metz, Fernando LucasPérez-Castillo, Isaac2019-08-16T02:31:34Z20191539-3755http://hdl.handle.net/10183/198075001097794Due to their conceptual and mathematical simplicity, Erdös-Rényi or classical random graphs remain as a fundamental paradigm to model complex interacting systems in several areas. Although condensation phenomena have been widely considered in complex network theory, the condensation of degrees has hitherto eluded a careful study. Here we show that the degree statistics of the classical random graph model undergoes a first-order phase transition between a Poisson-like distribution and a condensed phase, the latter characterized by a large fraction of nodes having degrees in a limited sector of their configuration space. The mechanism underlying the first-order transition is discussed in light of standard concepts in statistical physics. We uncover the phase diagram characterizing the ensemble space of the model, and we evaluate the rate function governing the probability to observe a condensed state, which shows that condensation of degrees is a rare statistical event akin to similar condensation phenomena recently observed in several other systems. Monte Carlo simulations confirm the exactness of our theoretical resultsapplication/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Melville. Vol. 100, no. 1 (July 2019), 012305, 8 p.CondensaçãoTransformações de faseSimulação de Monte CarloProcessos randômicosCondensation of degrees emerging through a first-order phase transition in classical random graphsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001097794.pdf.txt001097794.pdf.txtExtracted Texttext/plain37131http://www.lume.ufrgs.br/bitstream/10183/198075/2/001097794.pdf.txt5f8a263facec5cff0f159a8f5fd6a868MD52ORIGINAL001097794.pdfTexto completo (inglês)application/pdf1062902http://www.lume.ufrgs.br/bitstream/10183/198075/1/001097794.pdff7fcd55970afdc4af3e0648de2c7da0fMD5110183/1980752023-05-21 03:28:20.491117oai:www.lume.ufrgs.br:10183/198075Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2023-05-21T06:28:20Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Condensation of degrees emerging through a first-order phase transition in classical random graphs |
title |
Condensation of degrees emerging through a first-order phase transition in classical random graphs |
spellingShingle |
Condensation of degrees emerging through a first-order phase transition in classical random graphs Metz, Fernando Lucas Condensação Transformações de fase Simulação de Monte Carlo Processos randômicos |
title_short |
Condensation of degrees emerging through a first-order phase transition in classical random graphs |
title_full |
Condensation of degrees emerging through a first-order phase transition in classical random graphs |
title_fullStr |
Condensation of degrees emerging through a first-order phase transition in classical random graphs |
title_full_unstemmed |
Condensation of degrees emerging through a first-order phase transition in classical random graphs |
title_sort |
Condensation of degrees emerging through a first-order phase transition in classical random graphs |
author |
Metz, Fernando Lucas |
author_facet |
Metz, Fernando Lucas Pérez-Castillo, Isaac |
author_role |
author |
author2 |
Pérez-Castillo, Isaac |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Metz, Fernando Lucas Pérez-Castillo, Isaac |
dc.subject.por.fl_str_mv |
Condensação Transformações de fase Simulação de Monte Carlo Processos randômicos |
topic |
Condensação Transformações de fase Simulação de Monte Carlo Processos randômicos |
description |
Due to their conceptual and mathematical simplicity, Erdös-Rényi or classical random graphs remain as a fundamental paradigm to model complex interacting systems in several areas. Although condensation phenomena have been widely considered in complex network theory, the condensation of degrees has hitherto eluded a careful study. Here we show that the degree statistics of the classical random graph model undergoes a first-order phase transition between a Poisson-like distribution and a condensed phase, the latter characterized by a large fraction of nodes having degrees in a limited sector of their configuration space. The mechanism underlying the first-order transition is discussed in light of standard concepts in statistical physics. We uncover the phase diagram characterizing the ensemble space of the model, and we evaluate the rate function governing the probability to observe a condensed state, which shows that condensation of degrees is a rare statistical event akin to similar condensation phenomena recently observed in several other systems. Monte Carlo simulations confirm the exactness of our theoretical results |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-08-16T02:31:34Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/198075 |
dc.identifier.issn.pt_BR.fl_str_mv |
1539-3755 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001097794 |
identifier_str_mv |
1539-3755 001097794 |
url |
http://hdl.handle.net/10183/198075 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Physical review. E, Statistical, nonlinear, and soft matter physics. Melville. Vol. 100, no. 1 (July 2019), 012305, 8 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/198075/2/001097794.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/198075/1/001097794.pdf |
bitstream.checksum.fl_str_mv |
5f8a263facec5cff0f159a8f5fd6a868 f7fcd55970afdc4af3e0648de2c7da0f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br |
_version_ |
1817725051804319744 |