Condensation of degrees emerging through a first-order phase transition in classical random graphs

Detalhes bibliográficos
Autor(a) principal: Metz, Fernando Lucas
Data de Publicação: 2019
Outros Autores: Pérez-Castillo, Isaac
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/198075
Resumo: Due to their conceptual and mathematical simplicity, Erdös-Rényi or classical random graphs remain as a fundamental paradigm to model complex interacting systems in several areas. Although condensation phenomena have been widely considered in complex network theory, the condensation of degrees has hitherto eluded a careful study. Here we show that the degree statistics of the classical random graph model undergoes a first-order phase transition between a Poisson-like distribution and a condensed phase, the latter characterized by a large fraction of nodes having degrees in a limited sector of their configuration space. The mechanism underlying the first-order transition is discussed in light of standard concepts in statistical physics. We uncover the phase diagram characterizing the ensemble space of the model, and we evaluate the rate function governing the probability to observe a condensed state, which shows that condensation of degrees is a rare statistical event akin to similar condensation phenomena recently observed in several other systems. Monte Carlo simulations confirm the exactness of our theoretical results
id UFRGS-2_8481b80edf207535dbf40c2be6153612
oai_identifier_str oai:www.lume.ufrgs.br:10183/198075
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Metz, Fernando LucasPérez-Castillo, Isaac2019-08-16T02:31:34Z20191539-3755http://hdl.handle.net/10183/198075001097794Due to their conceptual and mathematical simplicity, Erdös-Rényi or classical random graphs remain as a fundamental paradigm to model complex interacting systems in several areas. Although condensation phenomena have been widely considered in complex network theory, the condensation of degrees has hitherto eluded a careful study. Here we show that the degree statistics of the classical random graph model undergoes a first-order phase transition between a Poisson-like distribution and a condensed phase, the latter characterized by a large fraction of nodes having degrees in a limited sector of their configuration space. The mechanism underlying the first-order transition is discussed in light of standard concepts in statistical physics. We uncover the phase diagram characterizing the ensemble space of the model, and we evaluate the rate function governing the probability to observe a condensed state, which shows that condensation of degrees is a rare statistical event akin to similar condensation phenomena recently observed in several other systems. Monte Carlo simulations confirm the exactness of our theoretical resultsapplication/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Melville. Vol. 100, no. 1 (July 2019), 012305, 8 p.CondensaçãoTransformações de faseSimulação de Monte CarloProcessos randômicosCondensation of degrees emerging through a first-order phase transition in classical random graphsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001097794.pdf.txt001097794.pdf.txtExtracted Texttext/plain37131http://www.lume.ufrgs.br/bitstream/10183/198075/2/001097794.pdf.txt5f8a263facec5cff0f159a8f5fd6a868MD52ORIGINAL001097794.pdfTexto completo (inglês)application/pdf1062902http://www.lume.ufrgs.br/bitstream/10183/198075/1/001097794.pdff7fcd55970afdc4af3e0648de2c7da0fMD5110183/1980752023-05-21 03:28:20.491117oai:www.lume.ufrgs.br:10183/198075Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2023-05-21T06:28:20Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Condensation of degrees emerging through a first-order phase transition in classical random graphs
title Condensation of degrees emerging through a first-order phase transition in classical random graphs
spellingShingle Condensation of degrees emerging through a first-order phase transition in classical random graphs
Metz, Fernando Lucas
Condensação
Transformações de fase
Simulação de Monte Carlo
Processos randômicos
title_short Condensation of degrees emerging through a first-order phase transition in classical random graphs
title_full Condensation of degrees emerging through a first-order phase transition in classical random graphs
title_fullStr Condensation of degrees emerging through a first-order phase transition in classical random graphs
title_full_unstemmed Condensation of degrees emerging through a first-order phase transition in classical random graphs
title_sort Condensation of degrees emerging through a first-order phase transition in classical random graphs
author Metz, Fernando Lucas
author_facet Metz, Fernando Lucas
Pérez-Castillo, Isaac
author_role author
author2 Pérez-Castillo, Isaac
author2_role author
dc.contributor.author.fl_str_mv Metz, Fernando Lucas
Pérez-Castillo, Isaac
dc.subject.por.fl_str_mv Condensação
Transformações de fase
Simulação de Monte Carlo
Processos randômicos
topic Condensação
Transformações de fase
Simulação de Monte Carlo
Processos randômicos
description Due to their conceptual and mathematical simplicity, Erdös-Rényi or classical random graphs remain as a fundamental paradigm to model complex interacting systems in several areas. Although condensation phenomena have been widely considered in complex network theory, the condensation of degrees has hitherto eluded a careful study. Here we show that the degree statistics of the classical random graph model undergoes a first-order phase transition between a Poisson-like distribution and a condensed phase, the latter characterized by a large fraction of nodes having degrees in a limited sector of their configuration space. The mechanism underlying the first-order transition is discussed in light of standard concepts in statistical physics. We uncover the phase diagram characterizing the ensemble space of the model, and we evaluate the rate function governing the probability to observe a condensed state, which shows that condensation of degrees is a rare statistical event akin to similar condensation phenomena recently observed in several other systems. Monte Carlo simulations confirm the exactness of our theoretical results
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-08-16T02:31:34Z
dc.date.issued.fl_str_mv 2019
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/198075
dc.identifier.issn.pt_BR.fl_str_mv 1539-3755
dc.identifier.nrb.pt_BR.fl_str_mv 001097794
identifier_str_mv 1539-3755
001097794
url http://hdl.handle.net/10183/198075
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. E, Statistical, nonlinear, and soft matter physics. Melville. Vol. 100, no. 1 (July 2019), 012305, 8 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/198075/2/001097794.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/198075/1/001097794.pdf
bitstream.checksum.fl_str_mv 5f8a263facec5cff0f159a8f5fd6a868
f7fcd55970afdc4af3e0648de2c7da0f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br
_version_ 1817725051804319744