Evaluation and performance of reading from big data formats

Detalhes bibliográficos
Autor(a) principal: Xavier, Lucca Sergi Berquó
Data de Publicação: 2021
Tipo de documento: Trabalho de conclusão de curso
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/223552
Resumo: A emergência de novos perfis de aplicação ocasionou um aumento abrupto no volume de dados gerado na atualidade. A heterogeneidade de tipos de dados é uma nova tendência: encontram-se tipos não-estruturados, como vídeos e imagens, e semi-estruturados, tais quais arquivos JSON e XML. Consequentemente, novos desafios relacionados à extração de valores importantes de corpos de dados surgiram. Para este propósito, criou-se o ramo de big data analytics. Nele, a performance é um fator primordial pois garante análises rápidas e uma geração de valores eficiente. Neste contexto, arquivos são utilizados para persistir grandes quantidades de informações, que podem ser utilizadas posteriormente em consultas analíticas. Arquivos de texto têm a vantagem de proporcionar uma fácil interação com o usuário final, ao passo que arquivos binários propõem estruturas que melhoram o acesso aos dados. Dentre estes, o Apache ORC e o Apache Parquet são formatos que apresentam uma organização orientada a colunas e compressão de dados, o que permite aumentar o desempenho de acesso. O objetivo deste projeto é avaliar o uso desses arquivos na plataforma SAP Vora, um sistema de gestão de base de dados distribuído, com o intuito de otimizar a performance de consultas sobre arquivos CSV, de tipo texto, em cenários de big data analytics. Duas técnicas foram empregadas para este fim: file pruning, a qual permite que arquivos possuindo informações desnecessárias para consulta sejam ignorados, e block pruning, que permite eliminar blocos individuais do arquivo que não fornecerão dados relevantes para consultas. Os resultados indicam que essas modificações melhoram o desempenho de cargas de trabalho analíticas sobre o formato CSV na plataforma Vora, diminuindo a discrepância de performance entre consultas sobre esses arquivos e aquelas feitas sobre outros formatos especializados para cenários de big data, como o Apache Parquet e o Apache ORC. Este projeto foi desenvolvido durante um estágio realizado na SAP em Walldorf, na Alemanha.
id UFRGS-2_8a9e5d39ac08a7fb25a6b47fd59f06af
oai_identifier_str oai:www.lume.ufrgs.br:10183/223552
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Xavier, Lucca Sergi BerquóGeyer, Claudio Fernando Resin2021-07-10T04:51:49Z2021http://hdl.handle.net/10183/223552001127314A emergência de novos perfis de aplicação ocasionou um aumento abrupto no volume de dados gerado na atualidade. A heterogeneidade de tipos de dados é uma nova tendência: encontram-se tipos não-estruturados, como vídeos e imagens, e semi-estruturados, tais quais arquivos JSON e XML. Consequentemente, novos desafios relacionados à extração de valores importantes de corpos de dados surgiram. Para este propósito, criou-se o ramo de big data analytics. Nele, a performance é um fator primordial pois garante análises rápidas e uma geração de valores eficiente. Neste contexto, arquivos são utilizados para persistir grandes quantidades de informações, que podem ser utilizadas posteriormente em consultas analíticas. Arquivos de texto têm a vantagem de proporcionar uma fácil interação com o usuário final, ao passo que arquivos binários propõem estruturas que melhoram o acesso aos dados. Dentre estes, o Apache ORC e o Apache Parquet são formatos que apresentam uma organização orientada a colunas e compressão de dados, o que permite aumentar o desempenho de acesso. O objetivo deste projeto é avaliar o uso desses arquivos na plataforma SAP Vora, um sistema de gestão de base de dados distribuído, com o intuito de otimizar a performance de consultas sobre arquivos CSV, de tipo texto, em cenários de big data analytics. Duas técnicas foram empregadas para este fim: file pruning, a qual permite que arquivos possuindo informações desnecessárias para consulta sejam ignorados, e block pruning, que permite eliminar blocos individuais do arquivo que não fornecerão dados relevantes para consultas. Os resultados indicam que essas modificações melhoram o desempenho de cargas de trabalho analíticas sobre o formato CSV na plataforma Vora, diminuindo a discrepância de performance entre consultas sobre esses arquivos e aquelas feitas sobre outros formatos especializados para cenários de big data, como o Apache Parquet e o Apache ORC. Este projeto foi desenvolvido durante um estágio realizado na SAP em Walldorf, na Alemanha.The emergence of new application profiles has caused a steep surge in the volume of data generated nowadays. Data heterogeneity is a modern trend, as unstructured types of data, such as videos and images, and semi-structured types, such as JSON and XML files, are becoming increasingly widespread. Consequently, new challenges related to analyzing and extracting important insights from huge bodies of information arise. The field of big data analytics has been developed to address these issues. Performance plays a key role in analytical scenarios, as it empowers applications to generate value in a more efficient and less time-consuming way. In this context, files are used to persist large quantities of information, which can be accessed later by analytic queries. Text files have the advantage of providing an easier interaction with the end user, whereas binary files propose structures that enhance data access. Among them, Apache ORC and Apache Parquet are formats that present characteristics such as column-oriented organization and data compression, which are used to achieve a better performance in queries. The objective of this project is to assess the usage of such files by SAP Vora, a distributed database management system, in order to draw out processing techniques used in big data analytics scenarios, and apply them to improve the performance of queries executed upon CSV files in Vora. Two techniques were employed to achieve such goal: file pruning, which allows Vora’s relational engine to ignore files possessing irrelevant information for the query, and block pruning, which disregards individual file blocks that do not possess data targeted by the query when processing files. Results demonstrate that these modifications enhance the efficiency of analytical workloads executed upon CSV files in Vora, thus narrowing the performance gap of queries executed upon this format and those targeting files tailored for big data scenarios, such as Apache Parquet and Apache ORC. The project was developed during an internship at SAP, in Walldorf, Germany.application/pdfengInformáticaDistributed systemsBig data analyticsFile formatsEvaluation and performance of reading from big data formatsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPorto Alegre, BR-RS2020Ciência da Computação: Ênfase em Ciência da Computação: Bachareladograduaçãoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001127314.pdf.txt001127314.pdf.txtExtracted Texttext/plain153761http://www.lume.ufrgs.br/bitstream/10183/223552/2/001127314.pdf.txt28a63ab67b009d580f877f5e13b21ffaMD52ORIGINAL001127314.pdfTexto completo (inglês)application/pdf3696758http://www.lume.ufrgs.br/bitstream/10183/223552/1/001127314.pdfba8c42e7e22c6b32251b2f7f7e5d6453MD5110183/2235522021-08-18 04:33:47.247491oai:www.lume.ufrgs.br:10183/223552Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-08-18T07:33:47Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Evaluation and performance of reading from big data formats
title Evaluation and performance of reading from big data formats
spellingShingle Evaluation and performance of reading from big data formats
Xavier, Lucca Sergi Berquó
Informática
Distributed systems
Big data analytics
File formats
title_short Evaluation and performance of reading from big data formats
title_full Evaluation and performance of reading from big data formats
title_fullStr Evaluation and performance of reading from big data formats
title_full_unstemmed Evaluation and performance of reading from big data formats
title_sort Evaluation and performance of reading from big data formats
author Xavier, Lucca Sergi Berquó
author_facet Xavier, Lucca Sergi Berquó
author_role author
dc.contributor.author.fl_str_mv Xavier, Lucca Sergi Berquó
dc.contributor.advisor1.fl_str_mv Geyer, Claudio Fernando Resin
contributor_str_mv Geyer, Claudio Fernando Resin
dc.subject.por.fl_str_mv Informática
topic Informática
Distributed systems
Big data analytics
File formats
dc.subject.eng.fl_str_mv Distributed systems
Big data analytics
File formats
description A emergência de novos perfis de aplicação ocasionou um aumento abrupto no volume de dados gerado na atualidade. A heterogeneidade de tipos de dados é uma nova tendência: encontram-se tipos não-estruturados, como vídeos e imagens, e semi-estruturados, tais quais arquivos JSON e XML. Consequentemente, novos desafios relacionados à extração de valores importantes de corpos de dados surgiram. Para este propósito, criou-se o ramo de big data analytics. Nele, a performance é um fator primordial pois garante análises rápidas e uma geração de valores eficiente. Neste contexto, arquivos são utilizados para persistir grandes quantidades de informações, que podem ser utilizadas posteriormente em consultas analíticas. Arquivos de texto têm a vantagem de proporcionar uma fácil interação com o usuário final, ao passo que arquivos binários propõem estruturas que melhoram o acesso aos dados. Dentre estes, o Apache ORC e o Apache Parquet são formatos que apresentam uma organização orientada a colunas e compressão de dados, o que permite aumentar o desempenho de acesso. O objetivo deste projeto é avaliar o uso desses arquivos na plataforma SAP Vora, um sistema de gestão de base de dados distribuído, com o intuito de otimizar a performance de consultas sobre arquivos CSV, de tipo texto, em cenários de big data analytics. Duas técnicas foram empregadas para este fim: file pruning, a qual permite que arquivos possuindo informações desnecessárias para consulta sejam ignorados, e block pruning, que permite eliminar blocos individuais do arquivo que não fornecerão dados relevantes para consultas. Os resultados indicam que essas modificações melhoram o desempenho de cargas de trabalho analíticas sobre o formato CSV na plataforma Vora, diminuindo a discrepância de performance entre consultas sobre esses arquivos e aquelas feitas sobre outros formatos especializados para cenários de big data, como o Apache Parquet e o Apache ORC. Este projeto foi desenvolvido durante um estágio realizado na SAP em Walldorf, na Alemanha.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-07-10T04:51:49Z
dc.date.issued.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/223552
dc.identifier.nrb.pt_BR.fl_str_mv 001127314
url http://hdl.handle.net/10183/223552
identifier_str_mv 001127314
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/223552/2/001127314.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/223552/1/001127314.pdf
bitstream.checksum.fl_str_mv 28a63ab67b009d580f877f5e13b21ffa
ba8c42e7e22c6b32251b2f7f7e5d6453
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1801224608765968384