Domain growth morphology in curvature-driven two-dimensional coarsening

Detalhes bibliográficos
Autor(a) principal: Sicilia, Alberto
Data de Publicação: 2007
Outros Autores: Arenzon, Jeferson Jacob, Bray, Alan J., Cugliandolo, Leticia F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/101627
Resumo: We study the distribution of domain areas, areas enclosed by domain boundaries ("hulls”), and perimeters for curvature-driven two-dimensional coarsening, employing a combination of exact analysis and numerical studies, for various initial conditions. We show that the number of hulls per unit area, nh (A,t) dA, with enclosed area in the interval (A,A+dA), is described, for a disordered initial condition, by the scaling function nh (A,t) =2ch/(A+ λht) 2, where ch=1/8 π3 ≈ 0.023 is a universal constant and λh is a material parameter. For a critical initial condition, the same form is obtained, with the same h but with ch replaced by ch /2. For the distribution of domain areas, we argue that the corresponding scaling function has, for random initial conditions, the form nd( A,t) =2cd (λdt)t'−2/(A+ λdt)t', where cd and λd are numerically very close to ch and λh, respectively, and t'=187/91 ≈ 2.055. For critical initial conditions, one replaces cd by cd/ and the exponent is t=379/187 ≈ 2.027. These results are extended to describe the number density of the length of hulls and domain walls surrounding connected clusters of aligned spins. These predictions are supported by extensive numerical simulations. We also study numerically the geometric properties of the boundaries and areas.
id UFRGS-2_922eaeeadccabf567553275f7de8b951
oai_identifier_str oai:www.lume.ufrgs.br:10183/101627
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Sicilia, AlbertoArenzon, Jeferson JacobBray, Alan J.Cugliandolo, Leticia F.2014-08-22T02:11:10Z20071539-3755http://hdl.handle.net/10183/101627000624083We study the distribution of domain areas, areas enclosed by domain boundaries ("hulls”), and perimeters for curvature-driven two-dimensional coarsening, employing a combination of exact analysis and numerical studies, for various initial conditions. We show that the number of hulls per unit area, nh (A,t) dA, with enclosed area in the interval (A,A+dA), is described, for a disordered initial condition, by the scaling function nh (A,t) =2ch/(A+ λht) 2, where ch=1/8 π3 ≈ 0.023 is a universal constant and λh is a material parameter. For a critical initial condition, the same form is obtained, with the same h but with ch replaced by ch /2. For the distribution of domain areas, we argue that the corresponding scaling function has, for random initial conditions, the form nd( A,t) =2cd (λdt)t'−2/(A+ λdt)t', where cd and λd are numerically very close to ch and λh, respectively, and t'=187/91 ≈ 2.055. For critical initial conditions, one replaces cd by cd/ and the exponent is t=379/187 ≈ 2.027. These results are extended to describe the number density of the length of hulls and domain walls surrounding connected clusters of aligned spins. These predictions are supported by extensive numerical simulations. We also study numerically the geometric properties of the boundaries and areas.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 76, no. 6 (Dec. 2007), 061116, 6 p.FísicaDomain growth morphology in curvature-driven two-dimensional coarseningEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000624083.pdf000624083.pdfTexto completo (inglês)application/pdf1841998http://www.lume.ufrgs.br/bitstream/10183/101627/1/000624083.pdfed419877b92315b06de6a4127bf79f59MD51TEXT000624083.pdf.txt000624083.pdf.txtExtracted Texttext/plain104320http://www.lume.ufrgs.br/bitstream/10183/101627/2/000624083.pdf.txtc4a5c55d5b795b3b575abf171c19e277MD52THUMBNAIL000624083.pdf.jpg000624083.pdf.jpgGenerated Thumbnailimage/jpeg2105http://www.lume.ufrgs.br/bitstream/10183/101627/3/000624083.pdf.jpgdecddac05ab7ffe90886a5cab88b5488MD5310183/1016272024-03-28 06:23:39.541234oai:www.lume.ufrgs.br:10183/101627Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-03-28T09:23:39Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Domain growth morphology in curvature-driven two-dimensional coarsening
title Domain growth morphology in curvature-driven two-dimensional coarsening
spellingShingle Domain growth morphology in curvature-driven two-dimensional coarsening
Sicilia, Alberto
Física
title_short Domain growth morphology in curvature-driven two-dimensional coarsening
title_full Domain growth morphology in curvature-driven two-dimensional coarsening
title_fullStr Domain growth morphology in curvature-driven two-dimensional coarsening
title_full_unstemmed Domain growth morphology in curvature-driven two-dimensional coarsening
title_sort Domain growth morphology in curvature-driven two-dimensional coarsening
author Sicilia, Alberto
author_facet Sicilia, Alberto
Arenzon, Jeferson Jacob
Bray, Alan J.
Cugliandolo, Leticia F.
author_role author
author2 Arenzon, Jeferson Jacob
Bray, Alan J.
Cugliandolo, Leticia F.
author2_role author
author
author
dc.contributor.author.fl_str_mv Sicilia, Alberto
Arenzon, Jeferson Jacob
Bray, Alan J.
Cugliandolo, Leticia F.
dc.subject.por.fl_str_mv Física
topic Física
description We study the distribution of domain areas, areas enclosed by domain boundaries ("hulls”), and perimeters for curvature-driven two-dimensional coarsening, employing a combination of exact analysis and numerical studies, for various initial conditions. We show that the number of hulls per unit area, nh (A,t) dA, with enclosed area in the interval (A,A+dA), is described, for a disordered initial condition, by the scaling function nh (A,t) =2ch/(A+ λht) 2, where ch=1/8 π3 ≈ 0.023 is a universal constant and λh is a material parameter. For a critical initial condition, the same form is obtained, with the same h but with ch replaced by ch /2. For the distribution of domain areas, we argue that the corresponding scaling function has, for random initial conditions, the form nd( A,t) =2cd (λdt)t'−2/(A+ λdt)t', where cd and λd are numerically very close to ch and λh, respectively, and t'=187/91 ≈ 2.055. For critical initial conditions, one replaces cd by cd/ and the exponent is t=379/187 ≈ 2.027. These results are extended to describe the number density of the length of hulls and domain walls surrounding connected clusters of aligned spins. These predictions are supported by extensive numerical simulations. We also study numerically the geometric properties of the boundaries and areas.
publishDate 2007
dc.date.issued.fl_str_mv 2007
dc.date.accessioned.fl_str_mv 2014-08-22T02:11:10Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/101627
dc.identifier.issn.pt_BR.fl_str_mv 1539-3755
dc.identifier.nrb.pt_BR.fl_str_mv 000624083
identifier_str_mv 1539-3755
000624083
url http://hdl.handle.net/10183/101627
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 76, no. 6 (Dec. 2007), 061116, 6 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/101627/1/000624083.pdf
http://www.lume.ufrgs.br/bitstream/10183/101627/2/000624083.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/101627/3/000624083.pdf.jpg
bitstream.checksum.fl_str_mv ed419877b92315b06de6a4127bf79f59
c4a5c55d5b795b3b575abf171c19e277
decddac05ab7ffe90886a5cab88b5488
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447555601858560