Domain growth morphology in curvature-driven two-dimensional coarsening
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/101627 |
Resumo: | We study the distribution of domain areas, areas enclosed by domain boundaries ("hulls”), and perimeters for curvature-driven two-dimensional coarsening, employing a combination of exact analysis and numerical studies, for various initial conditions. We show that the number of hulls per unit area, nh (A,t) dA, with enclosed area in the interval (A,A+dA), is described, for a disordered initial condition, by the scaling function nh (A,t) =2ch/(A+ λht) 2, where ch=1/8 π3 ≈ 0.023 is a universal constant and λh is a material parameter. For a critical initial condition, the same form is obtained, with the same h but with ch replaced by ch /2. For the distribution of domain areas, we argue that the corresponding scaling function has, for random initial conditions, the form nd( A,t) =2cd (λdt)t'−2/(A+ λdt)t', where cd and λd are numerically very close to ch and λh, respectively, and t'=187/91 ≈ 2.055. For critical initial conditions, one replaces cd by cd/ and the exponent is t=379/187 ≈ 2.027. These results are extended to describe the number density of the length of hulls and domain walls surrounding connected clusters of aligned spins. These predictions are supported by extensive numerical simulations. We also study numerically the geometric properties of the boundaries and areas. |
id |
UFRGS-2_922eaeeadccabf567553275f7de8b951 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/101627 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Sicilia, AlbertoArenzon, Jeferson JacobBray, Alan J.Cugliandolo, Leticia F.2014-08-22T02:11:10Z20071539-3755http://hdl.handle.net/10183/101627000624083We study the distribution of domain areas, areas enclosed by domain boundaries ("hulls”), and perimeters for curvature-driven two-dimensional coarsening, employing a combination of exact analysis and numerical studies, for various initial conditions. We show that the number of hulls per unit area, nh (A,t) dA, with enclosed area in the interval (A,A+dA), is described, for a disordered initial condition, by the scaling function nh (A,t) =2ch/(A+ λht) 2, where ch=1/8 π3 ≈ 0.023 is a universal constant and λh is a material parameter. For a critical initial condition, the same form is obtained, with the same h but with ch replaced by ch /2. For the distribution of domain areas, we argue that the corresponding scaling function has, for random initial conditions, the form nd( A,t) =2cd (λdt)t'−2/(A+ λdt)t', where cd and λd are numerically very close to ch and λh, respectively, and t'=187/91 ≈ 2.055. For critical initial conditions, one replaces cd by cd/ and the exponent is t=379/187 ≈ 2.027. These results are extended to describe the number density of the length of hulls and domain walls surrounding connected clusters of aligned spins. These predictions are supported by extensive numerical simulations. We also study numerically the geometric properties of the boundaries and areas.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 76, no. 6 (Dec. 2007), 061116, 6 p.FísicaDomain growth morphology in curvature-driven two-dimensional coarseningEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000624083.pdf000624083.pdfTexto completo (inglês)application/pdf1841998http://www.lume.ufrgs.br/bitstream/10183/101627/1/000624083.pdfed419877b92315b06de6a4127bf79f59MD51TEXT000624083.pdf.txt000624083.pdf.txtExtracted Texttext/plain104320http://www.lume.ufrgs.br/bitstream/10183/101627/2/000624083.pdf.txtc4a5c55d5b795b3b575abf171c19e277MD52THUMBNAIL000624083.pdf.jpg000624083.pdf.jpgGenerated Thumbnailimage/jpeg2105http://www.lume.ufrgs.br/bitstream/10183/101627/3/000624083.pdf.jpgdecddac05ab7ffe90886a5cab88b5488MD5310183/1016272024-03-28 06:23:39.541234oai:www.lume.ufrgs.br:10183/101627Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-03-28T09:23:39Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Domain growth morphology in curvature-driven two-dimensional coarsening |
title |
Domain growth morphology in curvature-driven two-dimensional coarsening |
spellingShingle |
Domain growth morphology in curvature-driven two-dimensional coarsening Sicilia, Alberto Física |
title_short |
Domain growth morphology in curvature-driven two-dimensional coarsening |
title_full |
Domain growth morphology in curvature-driven two-dimensional coarsening |
title_fullStr |
Domain growth morphology in curvature-driven two-dimensional coarsening |
title_full_unstemmed |
Domain growth morphology in curvature-driven two-dimensional coarsening |
title_sort |
Domain growth morphology in curvature-driven two-dimensional coarsening |
author |
Sicilia, Alberto |
author_facet |
Sicilia, Alberto Arenzon, Jeferson Jacob Bray, Alan J. Cugliandolo, Leticia F. |
author_role |
author |
author2 |
Arenzon, Jeferson Jacob Bray, Alan J. Cugliandolo, Leticia F. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Sicilia, Alberto Arenzon, Jeferson Jacob Bray, Alan J. Cugliandolo, Leticia F. |
dc.subject.por.fl_str_mv |
Física |
topic |
Física |
description |
We study the distribution of domain areas, areas enclosed by domain boundaries ("hulls”), and perimeters for curvature-driven two-dimensional coarsening, employing a combination of exact analysis and numerical studies, for various initial conditions. We show that the number of hulls per unit area, nh (A,t) dA, with enclosed area in the interval (A,A+dA), is described, for a disordered initial condition, by the scaling function nh (A,t) =2ch/(A+ λht) 2, where ch=1/8 π3 ≈ 0.023 is a universal constant and λh is a material parameter. For a critical initial condition, the same form is obtained, with the same h but with ch replaced by ch /2. For the distribution of domain areas, we argue that the corresponding scaling function has, for random initial conditions, the form nd( A,t) =2cd (λdt)t'−2/(A+ λdt)t', where cd and λd are numerically very close to ch and λh, respectively, and t'=187/91 ≈ 2.055. For critical initial conditions, one replaces cd by cd/ and the exponent is t=379/187 ≈ 2.027. These results are extended to describe the number density of the length of hulls and domain walls surrounding connected clusters of aligned spins. These predictions are supported by extensive numerical simulations. We also study numerically the geometric properties of the boundaries and areas. |
publishDate |
2007 |
dc.date.issued.fl_str_mv |
2007 |
dc.date.accessioned.fl_str_mv |
2014-08-22T02:11:10Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/101627 |
dc.identifier.issn.pt_BR.fl_str_mv |
1539-3755 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000624083 |
identifier_str_mv |
1539-3755 000624083 |
url |
http://hdl.handle.net/10183/101627 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 76, no. 6 (Dec. 2007), 061116, 6 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/101627/1/000624083.pdf http://www.lume.ufrgs.br/bitstream/10183/101627/2/000624083.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/101627/3/000624083.pdf.jpg |
bitstream.checksum.fl_str_mv |
ed419877b92315b06de6a4127bf79f59 c4a5c55d5b795b3b575abf171c19e277 decddac05ab7ffe90886a5cab88b5488 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447555601858560 |