Adaptive image denoising using scale and space consistency
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/27589 |
Resumo: | This paper proposes a new method for image denoising with edge preservation, based on image multiresolution decomposition by a redundant wavelet transform. In our approach, edges are implicitly located and preserved in the wavelet domain, whilst image noise is filtered out. At each resolution level, the image edges are estimated by gradient magnitudes (obtained from the wavelet coefficients), which are modeled probabilistically, and a shrinkage function is assembled based on the model obtained. Joint use of space and scale consistency is applied for better preservation of edges. The shrinkage functions are combined to preserve edges that appear simultaneously at several resolutions, and geometric constraints are applied to preserve edges that are not isolated. The proposed technique produces a filtered version of the original image, where homogeneous regions appear separated by well-defined edges. Possible applications include image presegmentation, and image denoising. |
id |
UFRGS-2_9586f6f72d3deda618336c693f2a8310 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/27589 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Scharcanski, JacobJung, Claudio RositoClarke, Robin Thomas2011-01-29T06:00:23Z20021057-7149http://hdl.handle.net/10183/27589000336618This paper proposes a new method for image denoising with edge preservation, based on image multiresolution decomposition by a redundant wavelet transform. In our approach, edges are implicitly located and preserved in the wavelet domain, whilst image noise is filtered out. At each resolution level, the image edges are estimated by gradient magnitudes (obtained from the wavelet coefficients), which are modeled probabilistically, and a shrinkage function is assembled based on the model obtained. Joint use of space and scale consistency is applied for better preservation of edges. The shrinkage functions are combined to preserve edges that appear simultaneously at several resolutions, and geometric constraints are applied to preserve edges that are not isolated. The proposed technique produces a filtered version of the original image, where homogeneous regions appear separated by well-defined edges. Possible applications include image presegmentation, and image denoising.application/pdfengIEEE transactions on image processing. New York. Vol. 11, no. 9 (Sept. 2002), p. 1092-1101Computação gráficaProcessamento de imagensFiltragem : ImagemEdge detectionImage denoisingMultiresolution analysisWaveletsAdaptive image denoising using scale and space consistencyEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000336618.pdf000336618.pdfTexto completo (inglês)application/pdf405713http://www.lume.ufrgs.br/bitstream/10183/27589/1/000336618.pdf53398790a1f72692c71ace964bc30045MD51TEXT000336618.pdf.txt000336618.pdf.txtExtracted Texttext/plain34945http://www.lume.ufrgs.br/bitstream/10183/27589/2/000336618.pdf.txt7fa9344da63b629bbfca8fcbc74c11c3MD52THUMBNAIL000336618.pdf.jpg000336618.pdf.jpgGenerated Thumbnailimage/jpeg2168http://www.lume.ufrgs.br/bitstream/10183/27589/3/000336618.pdf.jpg42b97e7f449b355476ef45698205143aMD5310183/275892021-06-26 04:39:02.373336oai:www.lume.ufrgs.br:10183/27589Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-26T07:39:02Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Adaptive image denoising using scale and space consistency |
title |
Adaptive image denoising using scale and space consistency |
spellingShingle |
Adaptive image denoising using scale and space consistency Scharcanski, Jacob Computação gráfica Processamento de imagens Filtragem : Imagem Edge detection Image denoising Multiresolution analysis Wavelets |
title_short |
Adaptive image denoising using scale and space consistency |
title_full |
Adaptive image denoising using scale and space consistency |
title_fullStr |
Adaptive image denoising using scale and space consistency |
title_full_unstemmed |
Adaptive image denoising using scale and space consistency |
title_sort |
Adaptive image denoising using scale and space consistency |
author |
Scharcanski, Jacob |
author_facet |
Scharcanski, Jacob Jung, Claudio Rosito Clarke, Robin Thomas |
author_role |
author |
author2 |
Jung, Claudio Rosito Clarke, Robin Thomas |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Scharcanski, Jacob Jung, Claudio Rosito Clarke, Robin Thomas |
dc.subject.por.fl_str_mv |
Computação gráfica Processamento de imagens Filtragem : Imagem |
topic |
Computação gráfica Processamento de imagens Filtragem : Imagem Edge detection Image denoising Multiresolution analysis Wavelets |
dc.subject.eng.fl_str_mv |
Edge detection Image denoising Multiresolution analysis Wavelets |
description |
This paper proposes a new method for image denoising with edge preservation, based on image multiresolution decomposition by a redundant wavelet transform. In our approach, edges are implicitly located and preserved in the wavelet domain, whilst image noise is filtered out. At each resolution level, the image edges are estimated by gradient magnitudes (obtained from the wavelet coefficients), which are modeled probabilistically, and a shrinkage function is assembled based on the model obtained. Joint use of space and scale consistency is applied for better preservation of edges. The shrinkage functions are combined to preserve edges that appear simultaneously at several resolutions, and geometric constraints are applied to preserve edges that are not isolated. The proposed technique produces a filtered version of the original image, where homogeneous regions appear separated by well-defined edges. Possible applications include image presegmentation, and image denoising. |
publishDate |
2002 |
dc.date.issued.fl_str_mv |
2002 |
dc.date.accessioned.fl_str_mv |
2011-01-29T06:00:23Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/27589 |
dc.identifier.issn.pt_BR.fl_str_mv |
1057-7149 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000336618 |
identifier_str_mv |
1057-7149 000336618 |
url |
http://hdl.handle.net/10183/27589 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
IEEE transactions on image processing. New York. Vol. 11, no. 9 (Sept. 2002), p. 1092-1101 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/27589/1/000336618.pdf http://www.lume.ufrgs.br/bitstream/10183/27589/2/000336618.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/27589/3/000336618.pdf.jpg |
bitstream.checksum.fl_str_mv |
53398790a1f72692c71ace964bc30045 7fa9344da63b629bbfca8fcbc74c11c3 42b97e7f449b355476ef45698205143a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447422090870784 |