Information space dynamics for neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/101401 |
Resumo: | We propose a coupled map lattice defined on a hypercube in M dimensions, the information space, to model memory retrieval by a neural network. We consider that both neuronal activity and the spiking phase may carry information. In this model the state of the network at a given time t is completely determined by a function y(σ,t) of the bit strings σ=(σ1, σ2 , . . . ,σM), where σi=±1 with i=1,2, . . . ,M, that gives the intensity with which the information σ is being expressed by the network. As an example, we consider logistic maps, coupled in the information space, to describe the evolution of the intensity function y(σ,t). We propose an interpretation of the maps in terms of the physiological state of the neurons and the coupling between them, obtain Hebb-like learning rules, show that the model works as an associative memory, numerically investigate the capacity of the network and the size of the basins of attraction, and estimate finite size effects. We finally show that the model, when exposed to sequences of uncorrelated stimuli, shows recency and latency effects that depend on the noise level, delay time of measurement, and stimulus intensity. |
id |
UFRGS-2_96fc19ac4b6926b7b8623fa430ee8fa0 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/101401 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Almeida, Rita Maria Cunha deIdiart, Marco Aurelio Pires2014-08-19T02:10:46Z20021539-3755http://hdl.handle.net/10183/101401000324029We propose a coupled map lattice defined on a hypercube in M dimensions, the information space, to model memory retrieval by a neural network. We consider that both neuronal activity and the spiking phase may carry information. In this model the state of the network at a given time t is completely determined by a function y(σ,t) of the bit strings σ=(σ1, σ2 , . . . ,σM), where σi=±1 with i=1,2, . . . ,M, that gives the intensity with which the information σ is being expressed by the network. As an example, we consider logistic maps, coupled in the information space, to describe the evolution of the intensity function y(σ,t). We propose an interpretation of the maps in terms of the physiological state of the neurons and the coupling between them, obtain Hebb-like learning rules, show that the model works as an associative memory, numerically investigate the capacity of the network and the size of the basins of attraction, and estimate finite size effects. We finally show that the model, when exposed to sequences of uncorrelated stimuli, shows recency and latency effects that depend on the noise level, delay time of measurement, and stimulus intensity.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 65, no. 6 (June 2002), 061908, 13 p.Modelos de cerebroArmazenagem endereçada por conteúdoTeoria de redesRedes neuraisNeurofisiologiaRuídoInformation space dynamics for neural networksEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000324029.pdf000324029.pdfTexto completo (inglês)application/pdf157451http://www.lume.ufrgs.br/bitstream/10183/101401/1/000324029.pdf1ead9265dec223d4db611d3176a5edb2MD51TEXT000324029.pdf.txt000324029.pdf.txtExtracted Texttext/plain55601http://www.lume.ufrgs.br/bitstream/10183/101401/2/000324029.pdf.txta35724a24418252f6444f63bec8ad15cMD52THUMBNAIL000324029.pdf.jpg000324029.pdf.jpgGenerated Thumbnailimage/jpeg1907http://www.lume.ufrgs.br/bitstream/10183/101401/3/000324029.pdf.jpg4f954e79bdf0b1db5d2f7de5cd7aa838MD5310183/1014012023-10-28 03:32:59.556366oai:www.lume.ufrgs.br:10183/101401Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-10-28T06:32:59Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Information space dynamics for neural networks |
title |
Information space dynamics for neural networks |
spellingShingle |
Information space dynamics for neural networks Almeida, Rita Maria Cunha de Modelos de cerebro Armazenagem endereçada por conteúdo Teoria de redes Redes neurais Neurofisiologia Ruído |
title_short |
Information space dynamics for neural networks |
title_full |
Information space dynamics for neural networks |
title_fullStr |
Information space dynamics for neural networks |
title_full_unstemmed |
Information space dynamics for neural networks |
title_sort |
Information space dynamics for neural networks |
author |
Almeida, Rita Maria Cunha de |
author_facet |
Almeida, Rita Maria Cunha de Idiart, Marco Aurelio Pires |
author_role |
author |
author2 |
Idiart, Marco Aurelio Pires |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Almeida, Rita Maria Cunha de Idiart, Marco Aurelio Pires |
dc.subject.por.fl_str_mv |
Modelos de cerebro Armazenagem endereçada por conteúdo Teoria de redes Redes neurais Neurofisiologia Ruído |
topic |
Modelos de cerebro Armazenagem endereçada por conteúdo Teoria de redes Redes neurais Neurofisiologia Ruído |
description |
We propose a coupled map lattice defined on a hypercube in M dimensions, the information space, to model memory retrieval by a neural network. We consider that both neuronal activity and the spiking phase may carry information. In this model the state of the network at a given time t is completely determined by a function y(σ,t) of the bit strings σ=(σ1, σ2 , . . . ,σM), where σi=±1 with i=1,2, . . . ,M, that gives the intensity with which the information σ is being expressed by the network. As an example, we consider logistic maps, coupled in the information space, to describe the evolution of the intensity function y(σ,t). We propose an interpretation of the maps in terms of the physiological state of the neurons and the coupling between them, obtain Hebb-like learning rules, show that the model works as an associative memory, numerically investigate the capacity of the network and the size of the basins of attraction, and estimate finite size effects. We finally show that the model, when exposed to sequences of uncorrelated stimuli, shows recency and latency effects that depend on the noise level, delay time of measurement, and stimulus intensity. |
publishDate |
2002 |
dc.date.issued.fl_str_mv |
2002 |
dc.date.accessioned.fl_str_mv |
2014-08-19T02:10:46Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/101401 |
dc.identifier.issn.pt_BR.fl_str_mv |
1539-3755 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000324029 |
identifier_str_mv |
1539-3755 000324029 |
url |
http://hdl.handle.net/10183/101401 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 65, no. 6 (June 2002), 061908, 13 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/101401/1/000324029.pdf http://www.lume.ufrgs.br/bitstream/10183/101401/2/000324029.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/101401/3/000324029.pdf.jpg |
bitstream.checksum.fl_str_mv |
1ead9265dec223d4db611d3176a5edb2 a35724a24418252f6444f63bec8ad15c 4f954e79bdf0b1db5d2f7de5cd7aa838 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447554961178624 |