Information space dynamics for neural networks

Detalhes bibliográficos
Autor(a) principal: Almeida, Rita Maria Cunha de
Data de Publicação: 2002
Outros Autores: Idiart, Marco Aurelio Pires
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/101401
Resumo: We propose a coupled map lattice defined on a hypercube in M dimensions, the information space, to model memory retrieval by a neural network. We consider that both neuronal activity and the spiking phase may carry information. In this model the state of the network at a given time t is completely determined by a function y(σ,t) of the bit strings σ=(σ1, σ2 , . . . ,σM), where σi=±1 with i=1,2, . . . ,M, that gives the intensity with which the information σ is being expressed by the network. As an example, we consider logistic maps, coupled in the information space, to describe the evolution of the intensity function y(σ,t). We propose an interpretation of the maps in terms of the physiological state of the neurons and the coupling between them, obtain Hebb-like learning rules, show that the model works as an associative memory, numerically investigate the capacity of the network and the size of the basins of attraction, and estimate finite size effects. We finally show that the model, when exposed to sequences of uncorrelated stimuli, shows recency and latency effects that depend on the noise level, delay time of measurement, and stimulus intensity.
id UFRGS-2_96fc19ac4b6926b7b8623fa430ee8fa0
oai_identifier_str oai:www.lume.ufrgs.br:10183/101401
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Almeida, Rita Maria Cunha deIdiart, Marco Aurelio Pires2014-08-19T02:10:46Z20021539-3755http://hdl.handle.net/10183/101401000324029We propose a coupled map lattice defined on a hypercube in M dimensions, the information space, to model memory retrieval by a neural network. We consider that both neuronal activity and the spiking phase may carry information. In this model the state of the network at a given time t is completely determined by a function y(σ,t) of the bit strings σ=(σ1, σ2 , . . . ,σM), where σi=±1 with i=1,2, . . . ,M, that gives the intensity with which the information σ is being expressed by the network. As an example, we consider logistic maps, coupled in the information space, to describe the evolution of the intensity function y(σ,t). We propose an interpretation of the maps in terms of the physiological state of the neurons and the coupling between them, obtain Hebb-like learning rules, show that the model works as an associative memory, numerically investigate the capacity of the network and the size of the basins of attraction, and estimate finite size effects. We finally show that the model, when exposed to sequences of uncorrelated stimuli, shows recency and latency effects that depend on the noise level, delay time of measurement, and stimulus intensity.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 65, no. 6 (June 2002), 061908, 13 p.Modelos de cerebroArmazenagem endereçada por conteúdoTeoria de redesRedes neuraisNeurofisiologiaRuídoInformation space dynamics for neural networksEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000324029.pdf000324029.pdfTexto completo (inglês)application/pdf157451http://www.lume.ufrgs.br/bitstream/10183/101401/1/000324029.pdf1ead9265dec223d4db611d3176a5edb2MD51TEXT000324029.pdf.txt000324029.pdf.txtExtracted Texttext/plain55601http://www.lume.ufrgs.br/bitstream/10183/101401/2/000324029.pdf.txta35724a24418252f6444f63bec8ad15cMD52THUMBNAIL000324029.pdf.jpg000324029.pdf.jpgGenerated Thumbnailimage/jpeg1907http://www.lume.ufrgs.br/bitstream/10183/101401/3/000324029.pdf.jpg4f954e79bdf0b1db5d2f7de5cd7aa838MD5310183/1014012023-10-28 03:32:59.556366oai:www.lume.ufrgs.br:10183/101401Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-10-28T06:32:59Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Information space dynamics for neural networks
title Information space dynamics for neural networks
spellingShingle Information space dynamics for neural networks
Almeida, Rita Maria Cunha de
Modelos de cerebro
Armazenagem endereçada por conteúdo
Teoria de redes
Redes neurais
Neurofisiologia
Ruído
title_short Information space dynamics for neural networks
title_full Information space dynamics for neural networks
title_fullStr Information space dynamics for neural networks
title_full_unstemmed Information space dynamics for neural networks
title_sort Information space dynamics for neural networks
author Almeida, Rita Maria Cunha de
author_facet Almeida, Rita Maria Cunha de
Idiart, Marco Aurelio Pires
author_role author
author2 Idiart, Marco Aurelio Pires
author2_role author
dc.contributor.author.fl_str_mv Almeida, Rita Maria Cunha de
Idiart, Marco Aurelio Pires
dc.subject.por.fl_str_mv Modelos de cerebro
Armazenagem endereçada por conteúdo
Teoria de redes
Redes neurais
Neurofisiologia
Ruído
topic Modelos de cerebro
Armazenagem endereçada por conteúdo
Teoria de redes
Redes neurais
Neurofisiologia
Ruído
description We propose a coupled map lattice defined on a hypercube in M dimensions, the information space, to model memory retrieval by a neural network. We consider that both neuronal activity and the spiking phase may carry information. In this model the state of the network at a given time t is completely determined by a function y(σ,t) of the bit strings σ=(σ1, σ2 , . . . ,σM), where σi=±1 with i=1,2, . . . ,M, that gives the intensity with which the information σ is being expressed by the network. As an example, we consider logistic maps, coupled in the information space, to describe the evolution of the intensity function y(σ,t). We propose an interpretation of the maps in terms of the physiological state of the neurons and the coupling between them, obtain Hebb-like learning rules, show that the model works as an associative memory, numerically investigate the capacity of the network and the size of the basins of attraction, and estimate finite size effects. We finally show that the model, when exposed to sequences of uncorrelated stimuli, shows recency and latency effects that depend on the noise level, delay time of measurement, and stimulus intensity.
publishDate 2002
dc.date.issued.fl_str_mv 2002
dc.date.accessioned.fl_str_mv 2014-08-19T02:10:46Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/101401
dc.identifier.issn.pt_BR.fl_str_mv 1539-3755
dc.identifier.nrb.pt_BR.fl_str_mv 000324029
identifier_str_mv 1539-3755
000324029
url http://hdl.handle.net/10183/101401
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 65, no. 6 (June 2002), 061908, 13 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/101401/1/000324029.pdf
http://www.lume.ufrgs.br/bitstream/10183/101401/2/000324029.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/101401/3/000324029.pdf.jpg
bitstream.checksum.fl_str_mv 1ead9265dec223d4db611d3176a5edb2
a35724a24418252f6444f63bec8ad15c
4f954e79bdf0b1db5d2f7de5cd7aa838
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447554961178624