redMaGiC : selecting luminous red galaxies from the DES Science Verification data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/150368 |
Resumo: | We introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling the redshift range z ∈ [0.2, 0.8]. Our fiducial sample has a comoving space density of 10−3 (h−1 Mpc)−3, and a median photo-z bias (zspec − zphoto) and scatter (σz/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5σ outlier fraction is 1.4 per cent.We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level. |
id |
UFRGS-2_a873befb1e4664fafcbdcf382fe3e2c0 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/150368 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Rozo, EduardoRykoff, EliAbate, AlexandraBonnet, Christopher CliveCrocce, MartinDavis, Christopher P.Hoyle, BenLeistedt, BorisPeiris, Hiranya V.Wechsler, Risa H.Abbott, Timothy M. C.Abdalla, Filipe B.Banerji, M.Bauer, Anne HollisterBenoit-Lévy, AurélienBernstein, Gary M.Bertin, EmmanuelBrooks, D.Buckley-Geer, ElizabethBurke, David LyleCapozzi, DiegoCarnero Rosell, AurelioCarollo, DanielaCarrasco Kind, MatíasCarretero Palacios, JorgeCastander Serentill, Francisco JavierChildress, MichaelCunha, Carlos EduardoD'Andrea, Christopher B.Davis, Tamara M.DePoy, Darren L.Desai, S.Diehl, H. ThomasDietrich, Jörg P.Doel, PeterEifler, TimEvrard, August E.Fausti Neto, AngeloFlaugher, BrennaFosalba Vela, PabloFrieman, Joshua A.Gaztañaga, EnriqueGerdes, David W.Glazebrook, KarlGruen, DanielGruendl, Robert A.Honscheid, K.James, David J.Jarvis, MichaelKim, A. G.Kuehn, KylerKuropatkin, Nikolay P.Lahav, OferLewis, Geraint F.Lidman, ChrisLima, Marcos Vinicius Borges TeixeiraMaia, Marcio Antonio GeimbaMarch, Marisa CristinaMartini, PaulMelchior, Peter M.Miller, Christopher J.Miquel, RamonMohr, Joseph J.Nichol, Robert C.Nord, Brian DennisO'Neill, C. R.Ogando, Ricardo L.C.Plazas Malagón, Andrés AlejandroRomer, Anita K.Roodman, AaronSako, MasaoSanchez-Alvaro, EusebioSantiago, Basilio XavierSchubnell, MichaelSevilla Noarbe, IgnacioSmith, Robert ChristopherSoares-Santos, MarcelleSobreira, FláviaSuchyta, EricSwanson, Molly E. C.Thaler, Jon J.Thomas, D.Uddin, SyedVikram, VinuWalker, AlistairWester, William CarlZhang, YuanyuanCosta, Luiz N. da2016-12-31T02:21:09Z20160035-8711http://hdl.handle.net/10183/150368001008179We introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling the redshift range z ∈ [0.2, 0.8]. Our fiducial sample has a comoving space density of 10−3 (h−1 Mpc)−3, and a median photo-z bias (zspec − zphoto) and scatter (σz/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5σ outlier fraction is 1.4 per cent.We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level.application/pdfengMonthly notices of the Royal Astronomical Society. Oxford. Vol. 461, no. 2 (Sept. 2016), p. 1431-1450Fotometria astronômicaDeslocamento para o vermelhoGaláxiasMethods: statisticalTechniques: photometricGalaxies: generalredMaGiC : selecting luminous red galaxies from the DES Science Verification dataEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001008179.pdf001008179.pdfTexto completo (inglês)application/pdf3496557http://www.lume.ufrgs.br/bitstream/10183/150368/1/001008179.pdf45d2870960ccd2d949b867a726ab84deMD51TEXT001008179.pdf.txt001008179.pdf.txtExtracted Texttext/plain101306http://www.lume.ufrgs.br/bitstream/10183/150368/2/001008179.pdf.txt2cd0ecec7ce609b49a95e9caba30de58MD52THUMBNAIL001008179.pdf.jpg001008179.pdf.jpgGenerated Thumbnailimage/jpeg2235http://www.lume.ufrgs.br/bitstream/10183/150368/3/001008179.pdf.jpg94dc91024ad1c06654d72e1eb9e0f456MD5310183/1503682023-07-02 03:41:58.367412oai:www.lume.ufrgs.br:10183/150368Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2023-07-02T06:41:58Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
redMaGiC : selecting luminous red galaxies from the DES Science Verification data |
title |
redMaGiC : selecting luminous red galaxies from the DES Science Verification data |
spellingShingle |
redMaGiC : selecting luminous red galaxies from the DES Science Verification data Rozo, Eduardo Fotometria astronômica Deslocamento para o vermelho Galáxias Methods: statistical Techniques: photometric Galaxies: general |
title_short |
redMaGiC : selecting luminous red galaxies from the DES Science Verification data |
title_full |
redMaGiC : selecting luminous red galaxies from the DES Science Verification data |
title_fullStr |
redMaGiC : selecting luminous red galaxies from the DES Science Verification data |
title_full_unstemmed |
redMaGiC : selecting luminous red galaxies from the DES Science Verification data |
title_sort |
redMaGiC : selecting luminous red galaxies from the DES Science Verification data |
author |
Rozo, Eduardo |
author_facet |
Rozo, Eduardo Rykoff, Eli Abate, Alexandra Bonnet, Christopher Clive Crocce, Martin Davis, Christopher P. Hoyle, Ben Leistedt, Boris Peiris, Hiranya V. Wechsler, Risa H. Abbott, Timothy M. C. Abdalla, Filipe B. Banerji, M. Bauer, Anne Hollister Benoit-Lévy, Aurélien Bernstein, Gary M. Bertin, Emmanuel Brooks, D. Buckley-Geer, Elizabeth Burke, David Lyle Capozzi, Diego Carnero Rosell, Aurelio Carollo, Daniela Carrasco Kind, Matías Carretero Palacios, Jorge Castander Serentill, Francisco Javier Childress, Michael Cunha, Carlos Eduardo D'Andrea, Christopher B. Davis, Tamara M. DePoy, Darren L. Desai, S. Diehl, H. Thomas Dietrich, Jörg P. Doel, Peter Eifler, Tim Evrard, August E. Fausti Neto, Angelo Flaugher, Brenna Fosalba Vela, Pablo Frieman, Joshua A. Gaztañaga, Enrique Gerdes, David W. Glazebrook, Karl Gruen, Daniel Gruendl, Robert A. Honscheid, K. James, David J. Jarvis, Michael Kim, A. G. Kuehn, Kyler Kuropatkin, Nikolay P. Lahav, Ofer Lewis, Geraint F. Lidman, Chris Lima, Marcos Vinicius Borges Teixeira Maia, Marcio Antonio Geimba March, Marisa Cristina Martini, Paul Melchior, Peter M. Miller, Christopher J. Miquel, Ramon Mohr, Joseph J. Nichol, Robert C. Nord, Brian Dennis O'Neill, C. R. Ogando, Ricardo L.C. Plazas Malagón, Andrés Alejandro Romer, Anita K. Roodman, Aaron Sako, Masao Sanchez-Alvaro, Eusebio Santiago, Basilio Xavier Schubnell, Michael Sevilla Noarbe, Ignacio Smith, Robert Christopher Soares-Santos, Marcelle Sobreira, Flávia Suchyta, Eric Swanson, Molly E. C. Thaler, Jon J. Thomas, D. Uddin, Syed Vikram, Vinu Walker, Alistair Wester, William Carl Zhang, Yuanyuan Costa, Luiz N. da |
author_role |
author |
author2 |
Rykoff, Eli Abate, Alexandra Bonnet, Christopher Clive Crocce, Martin Davis, Christopher P. Hoyle, Ben Leistedt, Boris Peiris, Hiranya V. Wechsler, Risa H. Abbott, Timothy M. C. Abdalla, Filipe B. Banerji, M. Bauer, Anne Hollister Benoit-Lévy, Aurélien Bernstein, Gary M. Bertin, Emmanuel Brooks, D. Buckley-Geer, Elizabeth Burke, David Lyle Capozzi, Diego Carnero Rosell, Aurelio Carollo, Daniela Carrasco Kind, Matías Carretero Palacios, Jorge Castander Serentill, Francisco Javier Childress, Michael Cunha, Carlos Eduardo D'Andrea, Christopher B. Davis, Tamara M. DePoy, Darren L. Desai, S. Diehl, H. Thomas Dietrich, Jörg P. Doel, Peter Eifler, Tim Evrard, August E. Fausti Neto, Angelo Flaugher, Brenna Fosalba Vela, Pablo Frieman, Joshua A. Gaztañaga, Enrique Gerdes, David W. Glazebrook, Karl Gruen, Daniel Gruendl, Robert A. Honscheid, K. James, David J. Jarvis, Michael Kim, A. G. Kuehn, Kyler Kuropatkin, Nikolay P. Lahav, Ofer Lewis, Geraint F. Lidman, Chris Lima, Marcos Vinicius Borges Teixeira Maia, Marcio Antonio Geimba March, Marisa Cristina Martini, Paul Melchior, Peter M. Miller, Christopher J. Miquel, Ramon Mohr, Joseph J. Nichol, Robert C. Nord, Brian Dennis O'Neill, C. R. Ogando, Ricardo L.C. Plazas Malagón, Andrés Alejandro Romer, Anita K. Roodman, Aaron Sako, Masao Sanchez-Alvaro, Eusebio Santiago, Basilio Xavier Schubnell, Michael Sevilla Noarbe, Ignacio Smith, Robert Christopher Soares-Santos, Marcelle Sobreira, Flávia Suchyta, Eric Swanson, Molly E. C. Thaler, Jon J. Thomas, D. Uddin, Syed Vikram, Vinu Walker, Alistair Wester, William Carl Zhang, Yuanyuan Costa, Luiz N. da |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Rozo, Eduardo Rykoff, Eli Abate, Alexandra Bonnet, Christopher Clive Crocce, Martin Davis, Christopher P. Hoyle, Ben Leistedt, Boris Peiris, Hiranya V. Wechsler, Risa H. Abbott, Timothy M. C. Abdalla, Filipe B. Banerji, M. Bauer, Anne Hollister Benoit-Lévy, Aurélien Bernstein, Gary M. Bertin, Emmanuel Brooks, D. Buckley-Geer, Elizabeth Burke, David Lyle Capozzi, Diego Carnero Rosell, Aurelio Carollo, Daniela Carrasco Kind, Matías Carretero Palacios, Jorge Castander Serentill, Francisco Javier Childress, Michael Cunha, Carlos Eduardo D'Andrea, Christopher B. Davis, Tamara M. DePoy, Darren L. Desai, S. Diehl, H. Thomas Dietrich, Jörg P. Doel, Peter Eifler, Tim Evrard, August E. Fausti Neto, Angelo Flaugher, Brenna Fosalba Vela, Pablo Frieman, Joshua A. Gaztañaga, Enrique Gerdes, David W. Glazebrook, Karl Gruen, Daniel Gruendl, Robert A. Honscheid, K. James, David J. Jarvis, Michael Kim, A. G. Kuehn, Kyler Kuropatkin, Nikolay P. Lahav, Ofer Lewis, Geraint F. Lidman, Chris Lima, Marcos Vinicius Borges Teixeira Maia, Marcio Antonio Geimba March, Marisa Cristina Martini, Paul Melchior, Peter M. Miller, Christopher J. Miquel, Ramon Mohr, Joseph J. Nichol, Robert C. Nord, Brian Dennis O'Neill, C. R. Ogando, Ricardo L.C. Plazas Malagón, Andrés Alejandro Romer, Anita K. Roodman, Aaron Sako, Masao Sanchez-Alvaro, Eusebio Santiago, Basilio Xavier Schubnell, Michael Sevilla Noarbe, Ignacio Smith, Robert Christopher Soares-Santos, Marcelle Sobreira, Flávia Suchyta, Eric Swanson, Molly E. C. Thaler, Jon J. Thomas, D. Uddin, Syed Vikram, Vinu Walker, Alistair Wester, William Carl Zhang, Yuanyuan Costa, Luiz N. da |
dc.subject.por.fl_str_mv |
Fotometria astronômica Deslocamento para o vermelho Galáxias |
topic |
Fotometria astronômica Deslocamento para o vermelho Galáxias Methods: statistical Techniques: photometric Galaxies: general |
dc.subject.eng.fl_str_mv |
Methods: statistical Techniques: photometric Galaxies: general |
description |
We introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling the redshift range z ∈ [0.2, 0.8]. Our fiducial sample has a comoving space density of 10−3 (h−1 Mpc)−3, and a median photo-z bias (zspec − zphoto) and scatter (σz/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5σ outlier fraction is 1.4 per cent.We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-12-31T02:21:09Z |
dc.date.issued.fl_str_mv |
2016 |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/150368 |
dc.identifier.issn.pt_BR.fl_str_mv |
0035-8711 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001008179 |
identifier_str_mv |
0035-8711 001008179 |
url |
http://hdl.handle.net/10183/150368 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Monthly notices of the Royal Astronomical Society. Oxford. Vol. 461, no. 2 (Sept. 2016), p. 1431-1450 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/150368/1/001008179.pdf http://www.lume.ufrgs.br/bitstream/10183/150368/2/001008179.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/150368/3/001008179.pdf.jpg |
bitstream.checksum.fl_str_mv |
45d2870960ccd2d949b867a726ab84de 2cd0ecec7ce609b49a95e9caba30de58 94dc91024ad1c06654d72e1eb9e0f456 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br |
_version_ |
1817724993713209344 |