redMaGiC : selecting luminous red galaxies from the DES Science Verification data

Detalhes bibliográficos
Autor(a) principal: Rozo, Eduardo
Data de Publicação: 2016
Outros Autores: Rykoff, Eli, Abate, Alexandra, Bonnet, Christopher Clive, Crocce, Martin, Davis, Christopher P., Hoyle, Ben, Leistedt, Boris, Peiris, Hiranya V., Wechsler, Risa H., Abbott, Timothy M. C., Abdalla, Filipe B., Banerji, M., Bauer, Anne Hollister, Benoit-Lévy, Aurélien, Bernstein, Gary M., Bertin, Emmanuel, Brooks, D., Buckley-Geer, Elizabeth, Burke, David Lyle, Capozzi, Diego, Carnero Rosell, Aurelio, Carollo, Daniela, Carrasco Kind, Matías, Carretero Palacios, Jorge, Castander Serentill, Francisco Javier, Childress, Michael, Cunha, Carlos Eduardo, D'Andrea, Christopher B., Davis, Tamara M., DePoy, Darren L., Desai, S., Diehl, H. Thomas, Dietrich, Jörg P., Doel, Peter, Eifler, Tim, Evrard, August E., Fausti Neto, Angelo, Flaugher, Brenna, Fosalba Vela, Pablo, Frieman, Joshua A., Gaztañaga, Enrique, Gerdes, David W., Glazebrook, Karl, Gruen, Daniel, Gruendl, Robert A., Honscheid, K., James, David J., Jarvis, Michael, Kim, A. G., Kuehn, Kyler, Kuropatkin, Nikolay P., Lahav, Ofer, Lewis, Geraint F., Lidman, Chris, Lima, Marcos Vinicius Borges Teixeira, Maia, Marcio Antonio Geimba, March, Marisa Cristina, Martini, Paul, Melchior, Peter M., Miller, Christopher J., Miquel, Ramon, Mohr, Joseph J., Nichol, Robert C., Nord, Brian Dennis, O'Neill, C. R., Ogando, Ricardo L.C., Plazas Malagón, Andrés Alejandro, Romer, Anita K., Roodman, Aaron, Sako, Masao, Sanchez-Alvaro, Eusebio, Santiago, Basilio Xavier, Schubnell, Michael, Sevilla Noarbe, Ignacio, Smith, Robert Christopher, Soares-Santos, Marcelle, Sobreira, Flávia, Suchyta, Eric, Swanson, Molly E. C., Thaler, Jon J., Thomas, D., Uddin, Syed, Vikram, Vinu, Walker, Alistair, Wester, William Carl, Zhang, Yuanyuan, Costa, Luiz N. da
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/150368
Resumo: We introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling the redshift range z ∈ [0.2, 0.8]. Our fiducial sample has a comoving space density of 10−3 (h−1 Mpc)−3, and a median photo-z bias (zspec − zphoto) and scatter (σz/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5σ outlier fraction is 1.4 per cent.We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level.
id UFRGS-2_a873befb1e4664fafcbdcf382fe3e2c0
oai_identifier_str oai:www.lume.ufrgs.br:10183/150368
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Rozo, EduardoRykoff, EliAbate, AlexandraBonnet, Christopher CliveCrocce, MartinDavis, Christopher P.Hoyle, BenLeistedt, BorisPeiris, Hiranya V.Wechsler, Risa H.Abbott, Timothy M. C.Abdalla, Filipe B.Banerji, M.Bauer, Anne HollisterBenoit-Lévy, AurélienBernstein, Gary M.Bertin, EmmanuelBrooks, D.Buckley-Geer, ElizabethBurke, David LyleCapozzi, DiegoCarnero Rosell, AurelioCarollo, DanielaCarrasco Kind, MatíasCarretero Palacios, JorgeCastander Serentill, Francisco JavierChildress, MichaelCunha, Carlos EduardoD'Andrea, Christopher B.Davis, Tamara M.DePoy, Darren L.Desai, S.Diehl, H. ThomasDietrich, Jörg P.Doel, PeterEifler, TimEvrard, August E.Fausti Neto, AngeloFlaugher, BrennaFosalba Vela, PabloFrieman, Joshua A.Gaztañaga, EnriqueGerdes, David W.Glazebrook, KarlGruen, DanielGruendl, Robert A.Honscheid, K.James, David J.Jarvis, MichaelKim, A. G.Kuehn, KylerKuropatkin, Nikolay P.Lahav, OferLewis, Geraint F.Lidman, ChrisLima, Marcos Vinicius Borges TeixeiraMaia, Marcio Antonio GeimbaMarch, Marisa CristinaMartini, PaulMelchior, Peter M.Miller, Christopher J.Miquel, RamonMohr, Joseph J.Nichol, Robert C.Nord, Brian DennisO'Neill, C. R.Ogando, Ricardo L.C.Plazas Malagón, Andrés AlejandroRomer, Anita K.Roodman, AaronSako, MasaoSanchez-Alvaro, EusebioSantiago, Basilio XavierSchubnell, MichaelSevilla Noarbe, IgnacioSmith, Robert ChristopherSoares-Santos, MarcelleSobreira, FláviaSuchyta, EricSwanson, Molly E. C.Thaler, Jon J.Thomas, D.Uddin, SyedVikram, VinuWalker, AlistairWester, William CarlZhang, YuanyuanCosta, Luiz N. da2016-12-31T02:21:09Z20160035-8711http://hdl.handle.net/10183/150368001008179We introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling the redshift range z ∈ [0.2, 0.8]. Our fiducial sample has a comoving space density of 10−3 (h−1 Mpc)−3, and a median photo-z bias (zspec − zphoto) and scatter (σz/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5σ outlier fraction is 1.4 per cent.We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level.application/pdfengMonthly notices of the Royal Astronomical Society. Oxford. Vol. 461, no. 2 (Sept. 2016), p. 1431-1450Fotometria astronômicaDeslocamento para o vermelhoGaláxiasMethods: statisticalTechniques: photometricGalaxies: generalredMaGiC : selecting luminous red galaxies from the DES Science Verification dataEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001008179.pdf001008179.pdfTexto completo (inglês)application/pdf3496557http://www.lume.ufrgs.br/bitstream/10183/150368/1/001008179.pdf45d2870960ccd2d949b867a726ab84deMD51TEXT001008179.pdf.txt001008179.pdf.txtExtracted Texttext/plain101306http://www.lume.ufrgs.br/bitstream/10183/150368/2/001008179.pdf.txt2cd0ecec7ce609b49a95e9caba30de58MD52THUMBNAIL001008179.pdf.jpg001008179.pdf.jpgGenerated Thumbnailimage/jpeg2235http://www.lume.ufrgs.br/bitstream/10183/150368/3/001008179.pdf.jpg94dc91024ad1c06654d72e1eb9e0f456MD5310183/1503682023-07-02 03:41:58.367412oai:www.lume.ufrgs.br:10183/150368Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2023-07-02T06:41:58Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv redMaGiC : selecting luminous red galaxies from the DES Science Verification data
title redMaGiC : selecting luminous red galaxies from the DES Science Verification data
spellingShingle redMaGiC : selecting luminous red galaxies from the DES Science Verification data
Rozo, Eduardo
Fotometria astronômica
Deslocamento para o vermelho
Galáxias
Methods: statistical
Techniques: photometric
Galaxies: general
title_short redMaGiC : selecting luminous red galaxies from the DES Science Verification data
title_full redMaGiC : selecting luminous red galaxies from the DES Science Verification data
title_fullStr redMaGiC : selecting luminous red galaxies from the DES Science Verification data
title_full_unstemmed redMaGiC : selecting luminous red galaxies from the DES Science Verification data
title_sort redMaGiC : selecting luminous red galaxies from the DES Science Verification data
author Rozo, Eduardo
author_facet Rozo, Eduardo
Rykoff, Eli
Abate, Alexandra
Bonnet, Christopher Clive
Crocce, Martin
Davis, Christopher P.
Hoyle, Ben
Leistedt, Boris
Peiris, Hiranya V.
Wechsler, Risa H.
Abbott, Timothy M. C.
Abdalla, Filipe B.
Banerji, M.
Bauer, Anne Hollister
Benoit-Lévy, Aurélien
Bernstein, Gary M.
Bertin, Emmanuel
Brooks, D.
Buckley-Geer, Elizabeth
Burke, David Lyle
Capozzi, Diego
Carnero Rosell, Aurelio
Carollo, Daniela
Carrasco Kind, Matías
Carretero Palacios, Jorge
Castander Serentill, Francisco Javier
Childress, Michael
Cunha, Carlos Eduardo
D'Andrea, Christopher B.
Davis, Tamara M.
DePoy, Darren L.
Desai, S.
Diehl, H. Thomas
Dietrich, Jörg P.
Doel, Peter
Eifler, Tim
Evrard, August E.
Fausti Neto, Angelo
Flaugher, Brenna
Fosalba Vela, Pablo
Frieman, Joshua A.
Gaztañaga, Enrique
Gerdes, David W.
Glazebrook, Karl
Gruen, Daniel
Gruendl, Robert A.
Honscheid, K.
James, David J.
Jarvis, Michael
Kim, A. G.
Kuehn, Kyler
Kuropatkin, Nikolay P.
Lahav, Ofer
Lewis, Geraint F.
Lidman, Chris
Lima, Marcos Vinicius Borges Teixeira
Maia, Marcio Antonio Geimba
March, Marisa Cristina
Martini, Paul
Melchior, Peter M.
Miller, Christopher J.
Miquel, Ramon
Mohr, Joseph J.
Nichol, Robert C.
Nord, Brian Dennis
O'Neill, C. R.
Ogando, Ricardo L.C.
Plazas Malagón, Andrés Alejandro
Romer, Anita K.
Roodman, Aaron
Sako, Masao
Sanchez-Alvaro, Eusebio
Santiago, Basilio Xavier
Schubnell, Michael
Sevilla Noarbe, Ignacio
Smith, Robert Christopher
Soares-Santos, Marcelle
Sobreira, Flávia
Suchyta, Eric
Swanson, Molly E. C.
Thaler, Jon J.
Thomas, D.
Uddin, Syed
Vikram, Vinu
Walker, Alistair
Wester, William Carl
Zhang, Yuanyuan
Costa, Luiz N. da
author_role author
author2 Rykoff, Eli
Abate, Alexandra
Bonnet, Christopher Clive
Crocce, Martin
Davis, Christopher P.
Hoyle, Ben
Leistedt, Boris
Peiris, Hiranya V.
Wechsler, Risa H.
Abbott, Timothy M. C.
Abdalla, Filipe B.
Banerji, M.
Bauer, Anne Hollister
Benoit-Lévy, Aurélien
Bernstein, Gary M.
Bertin, Emmanuel
Brooks, D.
Buckley-Geer, Elizabeth
Burke, David Lyle
Capozzi, Diego
Carnero Rosell, Aurelio
Carollo, Daniela
Carrasco Kind, Matías
Carretero Palacios, Jorge
Castander Serentill, Francisco Javier
Childress, Michael
Cunha, Carlos Eduardo
D'Andrea, Christopher B.
Davis, Tamara M.
DePoy, Darren L.
Desai, S.
Diehl, H. Thomas
Dietrich, Jörg P.
Doel, Peter
Eifler, Tim
Evrard, August E.
Fausti Neto, Angelo
Flaugher, Brenna
Fosalba Vela, Pablo
Frieman, Joshua A.
Gaztañaga, Enrique
Gerdes, David W.
Glazebrook, Karl
Gruen, Daniel
Gruendl, Robert A.
Honscheid, K.
James, David J.
Jarvis, Michael
Kim, A. G.
Kuehn, Kyler
Kuropatkin, Nikolay P.
Lahav, Ofer
Lewis, Geraint F.
Lidman, Chris
Lima, Marcos Vinicius Borges Teixeira
Maia, Marcio Antonio Geimba
March, Marisa Cristina
Martini, Paul
Melchior, Peter M.
Miller, Christopher J.
Miquel, Ramon
Mohr, Joseph J.
Nichol, Robert C.
Nord, Brian Dennis
O'Neill, C. R.
Ogando, Ricardo L.C.
Plazas Malagón, Andrés Alejandro
Romer, Anita K.
Roodman, Aaron
Sako, Masao
Sanchez-Alvaro, Eusebio
Santiago, Basilio Xavier
Schubnell, Michael
Sevilla Noarbe, Ignacio
Smith, Robert Christopher
Soares-Santos, Marcelle
Sobreira, Flávia
Suchyta, Eric
Swanson, Molly E. C.
Thaler, Jon J.
Thomas, D.
Uddin, Syed
Vikram, Vinu
Walker, Alistair
Wester, William Carl
Zhang, Yuanyuan
Costa, Luiz N. da
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Rozo, Eduardo
Rykoff, Eli
Abate, Alexandra
Bonnet, Christopher Clive
Crocce, Martin
Davis, Christopher P.
Hoyle, Ben
Leistedt, Boris
Peiris, Hiranya V.
Wechsler, Risa H.
Abbott, Timothy M. C.
Abdalla, Filipe B.
Banerji, M.
Bauer, Anne Hollister
Benoit-Lévy, Aurélien
Bernstein, Gary M.
Bertin, Emmanuel
Brooks, D.
Buckley-Geer, Elizabeth
Burke, David Lyle
Capozzi, Diego
Carnero Rosell, Aurelio
Carollo, Daniela
Carrasco Kind, Matías
Carretero Palacios, Jorge
Castander Serentill, Francisco Javier
Childress, Michael
Cunha, Carlos Eduardo
D'Andrea, Christopher B.
Davis, Tamara M.
DePoy, Darren L.
Desai, S.
Diehl, H. Thomas
Dietrich, Jörg P.
Doel, Peter
Eifler, Tim
Evrard, August E.
Fausti Neto, Angelo
Flaugher, Brenna
Fosalba Vela, Pablo
Frieman, Joshua A.
Gaztañaga, Enrique
Gerdes, David W.
Glazebrook, Karl
Gruen, Daniel
Gruendl, Robert A.
Honscheid, K.
James, David J.
Jarvis, Michael
Kim, A. G.
Kuehn, Kyler
Kuropatkin, Nikolay P.
Lahav, Ofer
Lewis, Geraint F.
Lidman, Chris
Lima, Marcos Vinicius Borges Teixeira
Maia, Marcio Antonio Geimba
March, Marisa Cristina
Martini, Paul
Melchior, Peter M.
Miller, Christopher J.
Miquel, Ramon
Mohr, Joseph J.
Nichol, Robert C.
Nord, Brian Dennis
O'Neill, C. R.
Ogando, Ricardo L.C.
Plazas Malagón, Andrés Alejandro
Romer, Anita K.
Roodman, Aaron
Sako, Masao
Sanchez-Alvaro, Eusebio
Santiago, Basilio Xavier
Schubnell, Michael
Sevilla Noarbe, Ignacio
Smith, Robert Christopher
Soares-Santos, Marcelle
Sobreira, Flávia
Suchyta, Eric
Swanson, Molly E. C.
Thaler, Jon J.
Thomas, D.
Uddin, Syed
Vikram, Vinu
Walker, Alistair
Wester, William Carl
Zhang, Yuanyuan
Costa, Luiz N. da
dc.subject.por.fl_str_mv Fotometria astronômica
Deslocamento para o vermelho
Galáxias
topic Fotometria astronômica
Deslocamento para o vermelho
Galáxias
Methods: statistical
Techniques: photometric
Galaxies: general
dc.subject.eng.fl_str_mv Methods: statistical
Techniques: photometric
Galaxies: general
description We introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling the redshift range z ∈ [0.2, 0.8]. Our fiducial sample has a comoving space density of 10−3 (h−1 Mpc)−3, and a median photo-z bias (zspec − zphoto) and scatter (σz/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5σ outlier fraction is 1.4 per cent.We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-12-31T02:21:09Z
dc.date.issued.fl_str_mv 2016
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/150368
dc.identifier.issn.pt_BR.fl_str_mv 0035-8711
dc.identifier.nrb.pt_BR.fl_str_mv 001008179
identifier_str_mv 0035-8711
001008179
url http://hdl.handle.net/10183/150368
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Monthly notices of the Royal Astronomical Society. Oxford. Vol. 461, no. 2 (Sept. 2016), p. 1431-1450
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/150368/1/001008179.pdf
http://www.lume.ufrgs.br/bitstream/10183/150368/2/001008179.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/150368/3/001008179.pdf.jpg
bitstream.checksum.fl_str_mv 45d2870960ccd2d949b867a726ab84de
2cd0ecec7ce609b49a95e9caba30de58
94dc91024ad1c06654d72e1eb9e0f456
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br
_version_ 1817724993713209344