Global evapotranspiration datasets assessment using water balance in South America

Detalhes bibliográficos
Autor(a) principal: Ruhoff, Anderson Luis
Data de Publicação: 2022
Outros Autores: Andrade, Bruno César Comini de, Santos, Leonardo Laipelt dos, Fleischmann, Ayan Santos, Siqueira, Vinícius Alencar, Moreira, Adriana Aparecida, Fontana, Rafael Barbedo, Cyganski, Gabriele Leão, Fernandez, Gabriel Matte Rios, Brêda, João Paulo Lyra Fialho, Paiva, Rodrigo Cauduro Dias de, Meller, Adalberto, Teixeira, Alexandre de Amorim, Araujo, Alexandre Abdalla, Fuckner, Marcus Andre, Biggs, Trent
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/246906
Resumo: Evapotranspiration (ET) connects the land to the atmosphere, linking water, energy, and carbon cycles. ET is an essential climate variable with a fundamental importance, and accurate assessments of the spatiotemporal trends and variability in ET are needed from regional to continental scales. This study compared eight global actual ET datasets (ETgl) and the average actual ET ensemble (ETens) based on remote sensing, climate reanalysis, land-surface, and biophysical models to ET computed from basin-scale water balance (ETwb) in South America on monthly time scale. The 50 small-to-large basins covered major rivers and different biomes and climate types. We also examined the magnitude, seasonality, and interannual variability of ET, comparing ETgl and ETens with ETwb. Global ET datasets were evaluated between 2003 and 2014 from the following datasets: Breathing Earth System Simulator (BESS), ECMWF Reanalysis 5 (ERA5), Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MOD16, Penman–Monteith–Leuning (PML), Operational Simplified Surface Energy Balance (SSEBop) and Terra Climate. By using ETwb as a basis for comparison, correlation coefficients ranged from 0.45 (SSEBop) to 0.60 (ETens), and RMSE ranged from 35.6 (ETens) to 40.5 mm·month⁻¹(MOD16). Overall, ETgl estimates ranged from 0 to 150 mm·month−1 in most basins in South America, while ETwb estimates showed maximum rates up to 250 mm·month⁻¹. Tgl varied by hydroclimatic regions: (i) basins located in humid climates with low seasonality in precipitation, including the Amazon, Uruguay, and South Atlantic basins, yielded weak correlation coefficients between monthly ETgl and ETwb, and (ii) tropical and semiarid basins (areas where precipitation demonstrates a strong seasonality, as in the São Francisco, Northeast Atlantic, Paraná/Paraguay, and Tocantins basins) yielded moderate-to-strong correlation coefficients. An assessment of the interannual variability demonstrated a disagreement between ETgl and ETwb in the humid tropics (in the Amazon), with ETgl showing a wide range of interannual variability. However, in tropical, subtropical, and semiarid climates, including the Tocantins, São Francisco, Paraná, Paraguay, Uruguay, and Atlantic basins (Northeast, East, and South), we found a stronger agreement between ETgl and ETwb for interannual variability. Assessing ET datasets enables the understanding of land–atmosphere exchanges in South America, to improvement of ET estimation and monitoring for water management.
id UFRGS-2_addb81b6f6d0e1857bcd97c7e3812e93
oai_identifier_str oai:www.lume.ufrgs.br:10183/246906
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Ruhoff, Anderson LuisAndrade, Bruno César Comini deSantos, Leonardo Laipelt dosFleischmann, Ayan SantosSiqueira, Vinícius AlencarMoreira, Adriana AparecidaFontana, Rafael BarbedoCyganski, Gabriele LeãoFernandez, Gabriel Matte RiosBrêda, João Paulo Lyra FialhoPaiva, Rodrigo Cauduro Dias deMeller, AdalbertoTeixeira, Alexandre de AmorimAraujo, Alexandre AbdallaFuckner, Marcus AndreBiggs, Trent2022-08-16T04:46:09Z20222072-4292http://hdl.handle.net/10183/246906001146550Evapotranspiration (ET) connects the land to the atmosphere, linking water, energy, and carbon cycles. ET is an essential climate variable with a fundamental importance, and accurate assessments of the spatiotemporal trends and variability in ET are needed from regional to continental scales. This study compared eight global actual ET datasets (ETgl) and the average actual ET ensemble (ETens) based on remote sensing, climate reanalysis, land-surface, and biophysical models to ET computed from basin-scale water balance (ETwb) in South America on monthly time scale. The 50 small-to-large basins covered major rivers and different biomes and climate types. We also examined the magnitude, seasonality, and interannual variability of ET, comparing ETgl and ETens with ETwb. Global ET datasets were evaluated between 2003 and 2014 from the following datasets: Breathing Earth System Simulator (BESS), ECMWF Reanalysis 5 (ERA5), Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MOD16, Penman–Monteith–Leuning (PML), Operational Simplified Surface Energy Balance (SSEBop) and Terra Climate. By using ETwb as a basis for comparison, correlation coefficients ranged from 0.45 (SSEBop) to 0.60 (ETens), and RMSE ranged from 35.6 (ETens) to 40.5 mm·month⁻¹(MOD16). Overall, ETgl estimates ranged from 0 to 150 mm·month−1 in most basins in South America, while ETwb estimates showed maximum rates up to 250 mm·month⁻¹. Tgl varied by hydroclimatic regions: (i) basins located in humid climates with low seasonality in precipitation, including the Amazon, Uruguay, and South Atlantic basins, yielded weak correlation coefficients between monthly ETgl and ETwb, and (ii) tropical and semiarid basins (areas where precipitation demonstrates a strong seasonality, as in the São Francisco, Northeast Atlantic, Paraná/Paraguay, and Tocantins basins) yielded moderate-to-strong correlation coefficients. An assessment of the interannual variability demonstrated a disagreement between ETgl and ETwb in the humid tropics (in the Amazon), with ETgl showing a wide range of interannual variability. However, in tropical, subtropical, and semiarid climates, including the Tocantins, São Francisco, Paraná, Paraguay, Uruguay, and Atlantic basins (Northeast, East, and South), we found a stronger agreement between ETgl and ETwb for interannual variability. Assessing ET datasets enables the understanding of land–atmosphere exchanges in South America, to improvement of ET estimation and monitoring for water management.application/pdfengRemote sense. Basel. Vol. 14, n. 11 (Jun. 2022), [Article] 2526, 22 p.EvapotranspiraçãoSensoriamento remotoBalanço hídricoAmérica do SulGlobal evapotranspirationBasin water balanceBESSERA5GLDASGLEAMMOD16PMLSSEBopTerra ClimateGlobal evapotranspiration datasets assessment using water balance in South AmericaEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001146550.pdf.txt001146550.pdf.txtExtracted Texttext/plain86353http://www.lume.ufrgs.br/bitstream/10183/246906/2/001146550.pdf.txtc6a888f2bd2e520a031ae462c29f90d7MD52ORIGINAL001146550.pdfTexto completoapplication/pdf7730553http://www.lume.ufrgs.br/bitstream/10183/246906/1/001146550.pdf57d55c9851a4df35603bc18672e31f6dMD5110183/2469062023-11-10 04:25:10.226644oai:www.lume.ufrgs.br:10183/246906Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-11-10T06:25:10Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Global evapotranspiration datasets assessment using water balance in South America
title Global evapotranspiration datasets assessment using water balance in South America
spellingShingle Global evapotranspiration datasets assessment using water balance in South America
Ruhoff, Anderson Luis
Evapotranspiração
Sensoriamento remoto
Balanço hídrico
América do Sul
Global evapotranspiration
Basin water balance
BESS
ERA5
GLDAS
GLEAM
MOD16
PML
SSEBop
Terra Climate
title_short Global evapotranspiration datasets assessment using water balance in South America
title_full Global evapotranspiration datasets assessment using water balance in South America
title_fullStr Global evapotranspiration datasets assessment using water balance in South America
title_full_unstemmed Global evapotranspiration datasets assessment using water balance in South America
title_sort Global evapotranspiration datasets assessment using water balance in South America
author Ruhoff, Anderson Luis
author_facet Ruhoff, Anderson Luis
Andrade, Bruno César Comini de
Santos, Leonardo Laipelt dos
Fleischmann, Ayan Santos
Siqueira, Vinícius Alencar
Moreira, Adriana Aparecida
Fontana, Rafael Barbedo
Cyganski, Gabriele Leão
Fernandez, Gabriel Matte Rios
Brêda, João Paulo Lyra Fialho
Paiva, Rodrigo Cauduro Dias de
Meller, Adalberto
Teixeira, Alexandre de Amorim
Araujo, Alexandre Abdalla
Fuckner, Marcus Andre
Biggs, Trent
author_role author
author2 Andrade, Bruno César Comini de
Santos, Leonardo Laipelt dos
Fleischmann, Ayan Santos
Siqueira, Vinícius Alencar
Moreira, Adriana Aparecida
Fontana, Rafael Barbedo
Cyganski, Gabriele Leão
Fernandez, Gabriel Matte Rios
Brêda, João Paulo Lyra Fialho
Paiva, Rodrigo Cauduro Dias de
Meller, Adalberto
Teixeira, Alexandre de Amorim
Araujo, Alexandre Abdalla
Fuckner, Marcus Andre
Biggs, Trent
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Ruhoff, Anderson Luis
Andrade, Bruno César Comini de
Santos, Leonardo Laipelt dos
Fleischmann, Ayan Santos
Siqueira, Vinícius Alencar
Moreira, Adriana Aparecida
Fontana, Rafael Barbedo
Cyganski, Gabriele Leão
Fernandez, Gabriel Matte Rios
Brêda, João Paulo Lyra Fialho
Paiva, Rodrigo Cauduro Dias de
Meller, Adalberto
Teixeira, Alexandre de Amorim
Araujo, Alexandre Abdalla
Fuckner, Marcus Andre
Biggs, Trent
dc.subject.por.fl_str_mv Evapotranspiração
Sensoriamento remoto
Balanço hídrico
América do Sul
topic Evapotranspiração
Sensoriamento remoto
Balanço hídrico
América do Sul
Global evapotranspiration
Basin water balance
BESS
ERA5
GLDAS
GLEAM
MOD16
PML
SSEBop
Terra Climate
dc.subject.eng.fl_str_mv Global evapotranspiration
Basin water balance
BESS
ERA5
GLDAS
GLEAM
MOD16
PML
SSEBop
Terra Climate
description Evapotranspiration (ET) connects the land to the atmosphere, linking water, energy, and carbon cycles. ET is an essential climate variable with a fundamental importance, and accurate assessments of the spatiotemporal trends and variability in ET are needed from regional to continental scales. This study compared eight global actual ET datasets (ETgl) and the average actual ET ensemble (ETens) based on remote sensing, climate reanalysis, land-surface, and biophysical models to ET computed from basin-scale water balance (ETwb) in South America on monthly time scale. The 50 small-to-large basins covered major rivers and different biomes and climate types. We also examined the magnitude, seasonality, and interannual variability of ET, comparing ETgl and ETens with ETwb. Global ET datasets were evaluated between 2003 and 2014 from the following datasets: Breathing Earth System Simulator (BESS), ECMWF Reanalysis 5 (ERA5), Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MOD16, Penman–Monteith–Leuning (PML), Operational Simplified Surface Energy Balance (SSEBop) and Terra Climate. By using ETwb as a basis for comparison, correlation coefficients ranged from 0.45 (SSEBop) to 0.60 (ETens), and RMSE ranged from 35.6 (ETens) to 40.5 mm·month⁻¹(MOD16). Overall, ETgl estimates ranged from 0 to 150 mm·month−1 in most basins in South America, while ETwb estimates showed maximum rates up to 250 mm·month⁻¹. Tgl varied by hydroclimatic regions: (i) basins located in humid climates with low seasonality in precipitation, including the Amazon, Uruguay, and South Atlantic basins, yielded weak correlation coefficients between monthly ETgl and ETwb, and (ii) tropical and semiarid basins (areas where precipitation demonstrates a strong seasonality, as in the São Francisco, Northeast Atlantic, Paraná/Paraguay, and Tocantins basins) yielded moderate-to-strong correlation coefficients. An assessment of the interannual variability demonstrated a disagreement between ETgl and ETwb in the humid tropics (in the Amazon), with ETgl showing a wide range of interannual variability. However, in tropical, subtropical, and semiarid climates, including the Tocantins, São Francisco, Paraná, Paraguay, Uruguay, and Atlantic basins (Northeast, East, and South), we found a stronger agreement between ETgl and ETwb for interannual variability. Assessing ET datasets enables the understanding of land–atmosphere exchanges in South America, to improvement of ET estimation and monitoring for water management.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-08-16T04:46:09Z
dc.date.issued.fl_str_mv 2022
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/246906
dc.identifier.issn.pt_BR.fl_str_mv 2072-4292
dc.identifier.nrb.pt_BR.fl_str_mv 001146550
identifier_str_mv 2072-4292
001146550
url http://hdl.handle.net/10183/246906
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Remote sense. Basel. Vol. 14, n. 11 (Jun. 2022), [Article] 2526, 22 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/246906/2/001146550.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/246906/1/001146550.pdf
bitstream.checksum.fl_str_mv c6a888f2bd2e520a031ae462c29f90d7
57d55c9851a4df35603bc18672e31f6d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447801372344320