Global evapotranspiration datasets assessment using water balance in South America
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/246906 |
Resumo: | Evapotranspiration (ET) connects the land to the atmosphere, linking water, energy, and carbon cycles. ET is an essential climate variable with a fundamental importance, and accurate assessments of the spatiotemporal trends and variability in ET are needed from regional to continental scales. This study compared eight global actual ET datasets (ETgl) and the average actual ET ensemble (ETens) based on remote sensing, climate reanalysis, land-surface, and biophysical models to ET computed from basin-scale water balance (ETwb) in South America on monthly time scale. The 50 small-to-large basins covered major rivers and different biomes and climate types. We also examined the magnitude, seasonality, and interannual variability of ET, comparing ETgl and ETens with ETwb. Global ET datasets were evaluated between 2003 and 2014 from the following datasets: Breathing Earth System Simulator (BESS), ECMWF Reanalysis 5 (ERA5), Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MOD16, Penman–Monteith–Leuning (PML), Operational Simplified Surface Energy Balance (SSEBop) and Terra Climate. By using ETwb as a basis for comparison, correlation coefficients ranged from 0.45 (SSEBop) to 0.60 (ETens), and RMSE ranged from 35.6 (ETens) to 40.5 mm·month⁻¹(MOD16). Overall, ETgl estimates ranged from 0 to 150 mm·month−1 in most basins in South America, while ETwb estimates showed maximum rates up to 250 mm·month⁻¹. Tgl varied by hydroclimatic regions: (i) basins located in humid climates with low seasonality in precipitation, including the Amazon, Uruguay, and South Atlantic basins, yielded weak correlation coefficients between monthly ETgl and ETwb, and (ii) tropical and semiarid basins (areas where precipitation demonstrates a strong seasonality, as in the São Francisco, Northeast Atlantic, Paraná/Paraguay, and Tocantins basins) yielded moderate-to-strong correlation coefficients. An assessment of the interannual variability demonstrated a disagreement between ETgl and ETwb in the humid tropics (in the Amazon), with ETgl showing a wide range of interannual variability. However, in tropical, subtropical, and semiarid climates, including the Tocantins, São Francisco, Paraná, Paraguay, Uruguay, and Atlantic basins (Northeast, East, and South), we found a stronger agreement between ETgl and ETwb for interannual variability. Assessing ET datasets enables the understanding of land–atmosphere exchanges in South America, to improvement of ET estimation and monitoring for water management. |
id |
UFRGS-2_addb81b6f6d0e1857bcd97c7e3812e93 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/246906 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Ruhoff, Anderson LuisAndrade, Bruno César Comini deSantos, Leonardo Laipelt dosFleischmann, Ayan SantosSiqueira, Vinícius AlencarMoreira, Adriana AparecidaFontana, Rafael BarbedoCyganski, Gabriele LeãoFernandez, Gabriel Matte RiosBrêda, João Paulo Lyra FialhoPaiva, Rodrigo Cauduro Dias deMeller, AdalbertoTeixeira, Alexandre de AmorimAraujo, Alexandre AbdallaFuckner, Marcus AndreBiggs, Trent2022-08-16T04:46:09Z20222072-4292http://hdl.handle.net/10183/246906001146550Evapotranspiration (ET) connects the land to the atmosphere, linking water, energy, and carbon cycles. ET is an essential climate variable with a fundamental importance, and accurate assessments of the spatiotemporal trends and variability in ET are needed from regional to continental scales. This study compared eight global actual ET datasets (ETgl) and the average actual ET ensemble (ETens) based on remote sensing, climate reanalysis, land-surface, and biophysical models to ET computed from basin-scale water balance (ETwb) in South America on monthly time scale. The 50 small-to-large basins covered major rivers and different biomes and climate types. We also examined the magnitude, seasonality, and interannual variability of ET, comparing ETgl and ETens with ETwb. Global ET datasets were evaluated between 2003 and 2014 from the following datasets: Breathing Earth System Simulator (BESS), ECMWF Reanalysis 5 (ERA5), Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MOD16, Penman–Monteith–Leuning (PML), Operational Simplified Surface Energy Balance (SSEBop) and Terra Climate. By using ETwb as a basis for comparison, correlation coefficients ranged from 0.45 (SSEBop) to 0.60 (ETens), and RMSE ranged from 35.6 (ETens) to 40.5 mm·month⁻¹(MOD16). Overall, ETgl estimates ranged from 0 to 150 mm·month−1 in most basins in South America, while ETwb estimates showed maximum rates up to 250 mm·month⁻¹. Tgl varied by hydroclimatic regions: (i) basins located in humid climates with low seasonality in precipitation, including the Amazon, Uruguay, and South Atlantic basins, yielded weak correlation coefficients between monthly ETgl and ETwb, and (ii) tropical and semiarid basins (areas where precipitation demonstrates a strong seasonality, as in the São Francisco, Northeast Atlantic, Paraná/Paraguay, and Tocantins basins) yielded moderate-to-strong correlation coefficients. An assessment of the interannual variability demonstrated a disagreement between ETgl and ETwb in the humid tropics (in the Amazon), with ETgl showing a wide range of interannual variability. However, in tropical, subtropical, and semiarid climates, including the Tocantins, São Francisco, Paraná, Paraguay, Uruguay, and Atlantic basins (Northeast, East, and South), we found a stronger agreement between ETgl and ETwb for interannual variability. Assessing ET datasets enables the understanding of land–atmosphere exchanges in South America, to improvement of ET estimation and monitoring for water management.application/pdfengRemote sense. Basel. Vol. 14, n. 11 (Jun. 2022), [Article] 2526, 22 p.EvapotranspiraçãoSensoriamento remotoBalanço hídricoAmérica do SulGlobal evapotranspirationBasin water balanceBESSERA5GLDASGLEAMMOD16PMLSSEBopTerra ClimateGlobal evapotranspiration datasets assessment using water balance in South AmericaEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001146550.pdf.txt001146550.pdf.txtExtracted Texttext/plain86353http://www.lume.ufrgs.br/bitstream/10183/246906/2/001146550.pdf.txtc6a888f2bd2e520a031ae462c29f90d7MD52ORIGINAL001146550.pdfTexto completoapplication/pdf7730553http://www.lume.ufrgs.br/bitstream/10183/246906/1/001146550.pdf57d55c9851a4df35603bc18672e31f6dMD5110183/2469062023-11-10 04:25:10.226644oai:www.lume.ufrgs.br:10183/246906Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-11-10T06:25:10Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Global evapotranspiration datasets assessment using water balance in South America |
title |
Global evapotranspiration datasets assessment using water balance in South America |
spellingShingle |
Global evapotranspiration datasets assessment using water balance in South America Ruhoff, Anderson Luis Evapotranspiração Sensoriamento remoto Balanço hídrico América do Sul Global evapotranspiration Basin water balance BESS ERA5 GLDAS GLEAM MOD16 PML SSEBop Terra Climate |
title_short |
Global evapotranspiration datasets assessment using water balance in South America |
title_full |
Global evapotranspiration datasets assessment using water balance in South America |
title_fullStr |
Global evapotranspiration datasets assessment using water balance in South America |
title_full_unstemmed |
Global evapotranspiration datasets assessment using water balance in South America |
title_sort |
Global evapotranspiration datasets assessment using water balance in South America |
author |
Ruhoff, Anderson Luis |
author_facet |
Ruhoff, Anderson Luis Andrade, Bruno César Comini de Santos, Leonardo Laipelt dos Fleischmann, Ayan Santos Siqueira, Vinícius Alencar Moreira, Adriana Aparecida Fontana, Rafael Barbedo Cyganski, Gabriele Leão Fernandez, Gabriel Matte Rios Brêda, João Paulo Lyra Fialho Paiva, Rodrigo Cauduro Dias de Meller, Adalberto Teixeira, Alexandre de Amorim Araujo, Alexandre Abdalla Fuckner, Marcus Andre Biggs, Trent |
author_role |
author |
author2 |
Andrade, Bruno César Comini de Santos, Leonardo Laipelt dos Fleischmann, Ayan Santos Siqueira, Vinícius Alencar Moreira, Adriana Aparecida Fontana, Rafael Barbedo Cyganski, Gabriele Leão Fernandez, Gabriel Matte Rios Brêda, João Paulo Lyra Fialho Paiva, Rodrigo Cauduro Dias de Meller, Adalberto Teixeira, Alexandre de Amorim Araujo, Alexandre Abdalla Fuckner, Marcus Andre Biggs, Trent |
author2_role |
author author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Ruhoff, Anderson Luis Andrade, Bruno César Comini de Santos, Leonardo Laipelt dos Fleischmann, Ayan Santos Siqueira, Vinícius Alencar Moreira, Adriana Aparecida Fontana, Rafael Barbedo Cyganski, Gabriele Leão Fernandez, Gabriel Matte Rios Brêda, João Paulo Lyra Fialho Paiva, Rodrigo Cauduro Dias de Meller, Adalberto Teixeira, Alexandre de Amorim Araujo, Alexandre Abdalla Fuckner, Marcus Andre Biggs, Trent |
dc.subject.por.fl_str_mv |
Evapotranspiração Sensoriamento remoto Balanço hídrico América do Sul |
topic |
Evapotranspiração Sensoriamento remoto Balanço hídrico América do Sul Global evapotranspiration Basin water balance BESS ERA5 GLDAS GLEAM MOD16 PML SSEBop Terra Climate |
dc.subject.eng.fl_str_mv |
Global evapotranspiration Basin water balance BESS ERA5 GLDAS GLEAM MOD16 PML SSEBop Terra Climate |
description |
Evapotranspiration (ET) connects the land to the atmosphere, linking water, energy, and carbon cycles. ET is an essential climate variable with a fundamental importance, and accurate assessments of the spatiotemporal trends and variability in ET are needed from regional to continental scales. This study compared eight global actual ET datasets (ETgl) and the average actual ET ensemble (ETens) based on remote sensing, climate reanalysis, land-surface, and biophysical models to ET computed from basin-scale water balance (ETwb) in South America on monthly time scale. The 50 small-to-large basins covered major rivers and different biomes and climate types. We also examined the magnitude, seasonality, and interannual variability of ET, comparing ETgl and ETens with ETwb. Global ET datasets were evaluated between 2003 and 2014 from the following datasets: Breathing Earth System Simulator (BESS), ECMWF Reanalysis 5 (ERA5), Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MOD16, Penman–Monteith–Leuning (PML), Operational Simplified Surface Energy Balance (SSEBop) and Terra Climate. By using ETwb as a basis for comparison, correlation coefficients ranged from 0.45 (SSEBop) to 0.60 (ETens), and RMSE ranged from 35.6 (ETens) to 40.5 mm·month⁻¹(MOD16). Overall, ETgl estimates ranged from 0 to 150 mm·month−1 in most basins in South America, while ETwb estimates showed maximum rates up to 250 mm·month⁻¹. Tgl varied by hydroclimatic regions: (i) basins located in humid climates with low seasonality in precipitation, including the Amazon, Uruguay, and South Atlantic basins, yielded weak correlation coefficients between monthly ETgl and ETwb, and (ii) tropical and semiarid basins (areas where precipitation demonstrates a strong seasonality, as in the São Francisco, Northeast Atlantic, Paraná/Paraguay, and Tocantins basins) yielded moderate-to-strong correlation coefficients. An assessment of the interannual variability demonstrated a disagreement between ETgl and ETwb in the humid tropics (in the Amazon), with ETgl showing a wide range of interannual variability. However, in tropical, subtropical, and semiarid climates, including the Tocantins, São Francisco, Paraná, Paraguay, Uruguay, and Atlantic basins (Northeast, East, and South), we found a stronger agreement between ETgl and ETwb for interannual variability. Assessing ET datasets enables the understanding of land–atmosphere exchanges in South America, to improvement of ET estimation and monitoring for water management. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-08-16T04:46:09Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/246906 |
dc.identifier.issn.pt_BR.fl_str_mv |
2072-4292 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001146550 |
identifier_str_mv |
2072-4292 001146550 |
url |
http://hdl.handle.net/10183/246906 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Remote sense. Basel. Vol. 14, n. 11 (Jun. 2022), [Article] 2526, 22 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/246906/2/001146550.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/246906/1/001146550.pdf |
bitstream.checksum.fl_str_mv |
c6a888f2bd2e520a031ae462c29f90d7 57d55c9851a4df35603bc18672e31f6d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447801372344320 |