A model for the formation of niobium structures by anodization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/172784 |
Resumo: | The fluoride use for anodizing electrolytes has been primarily responsible for the formation of nanoporous oxides at valve metals, except aluminum, since it causes a dissolution process. This study presents the formation of an oxide model according to the following anodizing parameters: 100 V, 12.73 mA/cm², room temperature and the niobium samples anodized in niobium oxalate and oxalic acid electrolytes without and with the addition of HF for 5, 30 and 60 min. The anodized samples were analyzed morphologically by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM) and the hydrophobicity of the samples was assessed by the sessile drop method. The presence of fluor in the niobium oxalate electrolyte formed oxides with lower a dissolution and a low hydrophobicity compared to the one formed in oxalic acid was attributed to the incorporation of niobium and oxalate ions. Thereby, the model proposed in this paper showed that during anodization the migration of the fluoride ion into the oxide occurs at high speed, which results in the formation of microcones, leading to the formation of discrete layers of porous oxide. |
id |
UFRGS-2_b23ee7bafdabe63f1f6a2f2851b1a00c |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/172784 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Bianchin, Ana Carolina VieroMaldaner, Guilherme ReisFühr, Luciane TaisBeltrami, Lílian Vanessa RossaMalfatti, Célia de FragaRieder, Ester SchmidtKunst, Sandra RaquelOliveira, Cláudia Trindade2018-02-23T02:24:17Z20171516-1439http://hdl.handle.net/10183/172784001058656The fluoride use for anodizing electrolytes has been primarily responsible for the formation of nanoporous oxides at valve metals, except aluminum, since it causes a dissolution process. This study presents the formation of an oxide model according to the following anodizing parameters: 100 V, 12.73 mA/cm², room temperature and the niobium samples anodized in niobium oxalate and oxalic acid electrolytes without and with the addition of HF for 5, 30 and 60 min. The anodized samples were analyzed morphologically by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM) and the hydrophobicity of the samples was assessed by the sessile drop method. The presence of fluor in the niobium oxalate electrolyte formed oxides with lower a dissolution and a low hydrophobicity compared to the one formed in oxalic acid was attributed to the incorporation of niobium and oxalate ions. Thereby, the model proposed in this paper showed that during anodization the migration of the fluoride ion into the oxide occurs at high speed, which results in the formation of microcones, leading to the formation of discrete layers of porous oxide.application/pdfengMaterials research : ibero-american journal of materials. São Carlos, SP. Vol. 20, no. 4 (July/Aug. 2017 ), p. 1010-1023NióbioAnodizaçãoNiobiumAnodizationPorous oxideAmmonium niobium oxalateOxalic acidA model for the formation of niobium structures by anodizationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001058656.pdf001058656.pdfTexto completo (inglês)application/pdf3632421http://www.lume.ufrgs.br/bitstream/10183/172784/1/001058656.pdf8c20fc8420861721d84eff4255f54419MD51TEXT001058656.pdf.txt001058656.pdf.txtExtracted Texttext/plain41217http://www.lume.ufrgs.br/bitstream/10183/172784/2/001058656.pdf.txt84a2d56e91b8b2691a6740b6f83363e7MD52THUMBNAIL001058656.pdf.jpg001058656.pdf.jpgGenerated Thumbnailimage/jpeg2081http://www.lume.ufrgs.br/bitstream/10183/172784/3/001058656.pdf.jpg4b882c4b5a69670a919926cbdcd8ca53MD5310183/1727842023-11-25 04:25:57.76581oai:www.lume.ufrgs.br:10183/172784Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2023-11-25T06:25:57Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
A model for the formation of niobium structures by anodization |
title |
A model for the formation of niobium structures by anodization |
spellingShingle |
A model for the formation of niobium structures by anodization Bianchin, Ana Carolina Viero Nióbio Anodização Niobium Anodization Porous oxide Ammonium niobium oxalate Oxalic acid |
title_short |
A model for the formation of niobium structures by anodization |
title_full |
A model for the formation of niobium structures by anodization |
title_fullStr |
A model for the formation of niobium structures by anodization |
title_full_unstemmed |
A model for the formation of niobium structures by anodization |
title_sort |
A model for the formation of niobium structures by anodization |
author |
Bianchin, Ana Carolina Viero |
author_facet |
Bianchin, Ana Carolina Viero Maldaner, Guilherme Reis Führ, Luciane Tais Beltrami, Lílian Vanessa Rossa Malfatti, Célia de Fraga Rieder, Ester Schmidt Kunst, Sandra Raquel Oliveira, Cláudia Trindade |
author_role |
author |
author2 |
Maldaner, Guilherme Reis Führ, Luciane Tais Beltrami, Lílian Vanessa Rossa Malfatti, Célia de Fraga Rieder, Ester Schmidt Kunst, Sandra Raquel Oliveira, Cláudia Trindade |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Bianchin, Ana Carolina Viero Maldaner, Guilherme Reis Führ, Luciane Tais Beltrami, Lílian Vanessa Rossa Malfatti, Célia de Fraga Rieder, Ester Schmidt Kunst, Sandra Raquel Oliveira, Cláudia Trindade |
dc.subject.por.fl_str_mv |
Nióbio Anodização |
topic |
Nióbio Anodização Niobium Anodization Porous oxide Ammonium niobium oxalate Oxalic acid |
dc.subject.eng.fl_str_mv |
Niobium Anodization Porous oxide Ammonium niobium oxalate Oxalic acid |
description |
The fluoride use for anodizing electrolytes has been primarily responsible for the formation of nanoporous oxides at valve metals, except aluminum, since it causes a dissolution process. This study presents the formation of an oxide model according to the following anodizing parameters: 100 V, 12.73 mA/cm², room temperature and the niobium samples anodized in niobium oxalate and oxalic acid electrolytes without and with the addition of HF for 5, 30 and 60 min. The anodized samples were analyzed morphologically by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM) and the hydrophobicity of the samples was assessed by the sessile drop method. The presence of fluor in the niobium oxalate electrolyte formed oxides with lower a dissolution and a low hydrophobicity compared to the one formed in oxalic acid was attributed to the incorporation of niobium and oxalate ions. Thereby, the model proposed in this paper showed that during anodization the migration of the fluoride ion into the oxide occurs at high speed, which results in the formation of microcones, leading to the formation of discrete layers of porous oxide. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017 |
dc.date.accessioned.fl_str_mv |
2018-02-23T02:24:17Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/172784 |
dc.identifier.issn.pt_BR.fl_str_mv |
1516-1439 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001058656 |
identifier_str_mv |
1516-1439 001058656 |
url |
http://hdl.handle.net/10183/172784 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Materials research : ibero-american journal of materials. São Carlos, SP. Vol. 20, no. 4 (July/Aug. 2017 ), p. 1010-1023 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/172784/1/001058656.pdf http://www.lume.ufrgs.br/bitstream/10183/172784/2/001058656.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/172784/3/001058656.pdf.jpg |
bitstream.checksum.fl_str_mv |
8c20fc8420861721d84eff4255f54419 84a2d56e91b8b2691a6740b6f83363e7 4b882c4b5a69670a919926cbdcd8ca53 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br |
_version_ |
1817725017526370304 |