A model for the formation of niobium structures by anodization

Detalhes bibliográficos
Autor(a) principal: Bianchin, Ana Carolina Viero
Data de Publicação: 2017
Outros Autores: Maldaner, Guilherme Reis, Führ, Luciane Tais, Beltrami, Lílian Vanessa Rossa, Malfatti, Célia de Fraga, Rieder, Ester Schmidt, Kunst, Sandra Raquel, Oliveira, Cláudia Trindade
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/172784
Resumo: The fluoride use for anodizing electrolytes has been primarily responsible for the formation of nanoporous oxides at valve metals, except aluminum, since it causes a dissolution process. This study presents the formation of an oxide model according to the following anodizing parameters: 100 V, 12.73 mA/cm², room temperature and the niobium samples anodized in niobium oxalate and oxalic acid electrolytes without and with the addition of HF for 5, 30 and 60 min. The anodized samples were analyzed morphologically by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM) and the hydrophobicity of the samples was assessed by the sessile drop method. The presence of fluor in the niobium oxalate electrolyte formed oxides with lower a dissolution and a low hydrophobicity compared to the one formed in oxalic acid was attributed to the incorporation of niobium and oxalate ions. Thereby, the model proposed in this paper showed that during anodization the migration of the fluoride ion into the oxide occurs at high speed, which results in the formation of microcones, leading to the formation of discrete layers of porous oxide.
id UFRGS-2_b23ee7bafdabe63f1f6a2f2851b1a00c
oai_identifier_str oai:www.lume.ufrgs.br:10183/172784
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Bianchin, Ana Carolina VieroMaldaner, Guilherme ReisFühr, Luciane TaisBeltrami, Lílian Vanessa RossaMalfatti, Célia de FragaRieder, Ester SchmidtKunst, Sandra RaquelOliveira, Cláudia Trindade2018-02-23T02:24:17Z20171516-1439http://hdl.handle.net/10183/172784001058656The fluoride use for anodizing electrolytes has been primarily responsible for the formation of nanoporous oxides at valve metals, except aluminum, since it causes a dissolution process. This study presents the formation of an oxide model according to the following anodizing parameters: 100 V, 12.73 mA/cm², room temperature and the niobium samples anodized in niobium oxalate and oxalic acid electrolytes without and with the addition of HF for 5, 30 and 60 min. The anodized samples were analyzed morphologically by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM) and the hydrophobicity of the samples was assessed by the sessile drop method. The presence of fluor in the niobium oxalate electrolyte formed oxides with lower a dissolution and a low hydrophobicity compared to the one formed in oxalic acid was attributed to the incorporation of niobium and oxalate ions. Thereby, the model proposed in this paper showed that during anodization the migration of the fluoride ion into the oxide occurs at high speed, which results in the formation of microcones, leading to the formation of discrete layers of porous oxide.application/pdfengMaterials research : ibero-american journal of materials. São Carlos, SP. Vol. 20, no. 4 (July/Aug. 2017 ), p. 1010-1023NióbioAnodizaçãoNiobiumAnodizationPorous oxideAmmonium niobium oxalateOxalic acidA model for the formation of niobium structures by anodizationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001058656.pdf001058656.pdfTexto completo (inglês)application/pdf3632421http://www.lume.ufrgs.br/bitstream/10183/172784/1/001058656.pdf8c20fc8420861721d84eff4255f54419MD51TEXT001058656.pdf.txt001058656.pdf.txtExtracted Texttext/plain41217http://www.lume.ufrgs.br/bitstream/10183/172784/2/001058656.pdf.txt84a2d56e91b8b2691a6740b6f83363e7MD52THUMBNAIL001058656.pdf.jpg001058656.pdf.jpgGenerated Thumbnailimage/jpeg2081http://www.lume.ufrgs.br/bitstream/10183/172784/3/001058656.pdf.jpg4b882c4b5a69670a919926cbdcd8ca53MD5310183/1727842023-11-25 04:25:57.76581oai:www.lume.ufrgs.br:10183/172784Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2023-11-25T06:25:57Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv A model for the formation of niobium structures by anodization
title A model for the formation of niobium structures by anodization
spellingShingle A model for the formation of niobium structures by anodization
Bianchin, Ana Carolina Viero
Nióbio
Anodização
Niobium
Anodization
Porous oxide
Ammonium niobium oxalate
Oxalic acid
title_short A model for the formation of niobium structures by anodization
title_full A model for the formation of niobium structures by anodization
title_fullStr A model for the formation of niobium structures by anodization
title_full_unstemmed A model for the formation of niobium structures by anodization
title_sort A model for the formation of niobium structures by anodization
author Bianchin, Ana Carolina Viero
author_facet Bianchin, Ana Carolina Viero
Maldaner, Guilherme Reis
Führ, Luciane Tais
Beltrami, Lílian Vanessa Rossa
Malfatti, Célia de Fraga
Rieder, Ester Schmidt
Kunst, Sandra Raquel
Oliveira, Cláudia Trindade
author_role author
author2 Maldaner, Guilherme Reis
Führ, Luciane Tais
Beltrami, Lílian Vanessa Rossa
Malfatti, Célia de Fraga
Rieder, Ester Schmidt
Kunst, Sandra Raquel
Oliveira, Cláudia Trindade
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Bianchin, Ana Carolina Viero
Maldaner, Guilherme Reis
Führ, Luciane Tais
Beltrami, Lílian Vanessa Rossa
Malfatti, Célia de Fraga
Rieder, Ester Schmidt
Kunst, Sandra Raquel
Oliveira, Cláudia Trindade
dc.subject.por.fl_str_mv Nióbio
Anodização
topic Nióbio
Anodização
Niobium
Anodization
Porous oxide
Ammonium niobium oxalate
Oxalic acid
dc.subject.eng.fl_str_mv Niobium
Anodization
Porous oxide
Ammonium niobium oxalate
Oxalic acid
description The fluoride use for anodizing electrolytes has been primarily responsible for the formation of nanoporous oxides at valve metals, except aluminum, since it causes a dissolution process. This study presents the formation of an oxide model according to the following anodizing parameters: 100 V, 12.73 mA/cm², room temperature and the niobium samples anodized in niobium oxalate and oxalic acid electrolytes without and with the addition of HF for 5, 30 and 60 min. The anodized samples were analyzed morphologically by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM) and the hydrophobicity of the samples was assessed by the sessile drop method. The presence of fluor in the niobium oxalate electrolyte formed oxides with lower a dissolution and a low hydrophobicity compared to the one formed in oxalic acid was attributed to the incorporation of niobium and oxalate ions. Thereby, the model proposed in this paper showed that during anodization the migration of the fluoride ion into the oxide occurs at high speed, which results in the formation of microcones, leading to the formation of discrete layers of porous oxide.
publishDate 2017
dc.date.issued.fl_str_mv 2017
dc.date.accessioned.fl_str_mv 2018-02-23T02:24:17Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/172784
dc.identifier.issn.pt_BR.fl_str_mv 1516-1439
dc.identifier.nrb.pt_BR.fl_str_mv 001058656
identifier_str_mv 1516-1439
001058656
url http://hdl.handle.net/10183/172784
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Materials research : ibero-american journal of materials. São Carlos, SP. Vol. 20, no. 4 (July/Aug. 2017 ), p. 1010-1023
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/172784/1/001058656.pdf
http://www.lume.ufrgs.br/bitstream/10183/172784/2/001058656.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/172784/3/001058656.pdf.jpg
bitstream.checksum.fl_str_mv 8c20fc8420861721d84eff4255f54419
84a2d56e91b8b2691a6740b6f83363e7
4b882c4b5a69670a919926cbdcd8ca53
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br
_version_ 1817725017526370304