A numerical investigation of inertia flows of Bingham-Papanastasiou fluids by an extra stress-pressure-velocity galerkin least-squares method

Detalhes bibliográficos
Autor(a) principal: Soto, Hilda Pari
Data de Publicação: 2010
Outros Autores: Martins-Costa, Maria Laura, Fonseca, Cleiton Elsner da, Frey, Sérgio Luiz
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/75845
Resumo: This article is concerned with finite element approximations for yield stress fluid flows through a sudden planar expansion. The mechanical model is composed by mass and momentum balance equations, coupled with the Bingham viscoplastic model regularized by Papanastasiou (1987) equation. A multi-field Galerkin least-squares method in terms of stress, velocity and pressure is employed to approximate the flows. This method is built to circumvent compatibility conditions involving pressure-velocity and stress-velocity finite element subspaces. In addition, thanks to an appropriate design of its stability parameters, it is able to remain stable and accurate in high Bingham and Reynolds flows. Numerical simulations concerning the flow of a regularized Bingham fluid through a one-to-four sudden planar expansion are performed. For creeping flows, yield stress effects on the fluid dynamics of viscoplastic materials are investigated through the ranging of Bingham number from 0.2 to 100. In the sequence, inertia effects are accounted for ranging the Reynolds number from 0 to 50. The numerical results are able to characterize accurately the morphology of yield surfaces in high Bingham flows subjected to inertia.
id UFRGS-2_b5830a044b47a75091bac798ee9c1924
oai_identifier_str oai:www.lume.ufrgs.br:10183/75845
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Soto, Hilda PariMartins-Costa, Maria LauraFonseca, Cleiton Elsner daFrey, Sérgio Luiz2013-07-11T02:23:11Z20101806-3691http://hdl.handle.net/10183/75845000779321This article is concerned with finite element approximations for yield stress fluid flows through a sudden planar expansion. The mechanical model is composed by mass and momentum balance equations, coupled with the Bingham viscoplastic model regularized by Papanastasiou (1987) equation. A multi-field Galerkin least-squares method in terms of stress, velocity and pressure is employed to approximate the flows. This method is built to circumvent compatibility conditions involving pressure-velocity and stress-velocity finite element subspaces. In addition, thanks to an appropriate design of its stability parameters, it is able to remain stable and accurate in high Bingham and Reynolds flows. Numerical simulations concerning the flow of a regularized Bingham fluid through a one-to-four sudden planar expansion are performed. For creeping flows, yield stress effects on the fluid dynamics of viscoplastic materials are investigated through the ranging of Bingham number from 0.2 to 100. In the sequence, inertia effects are accounted for ranging the Reynolds number from 0 to 50. The numerical results are able to characterize accurately the morphology of yield surfaces in high Bingham flows subjected to inertia.application/pdfengJournal of the Brazilian Society of Mechanical Sciences and Engineering. Rio de Janeiro, RJ. Vol. 32, no. 5 - special issue (Dec. 2010), p. 450-460Elementos finitosMecânica dos fluidosSimulação numéricaViscoplasticityBingham modelPapanastasiou regularizationInertia effectsMulti-field Galerkin least-squares methodA numerical investigation of inertia flows of Bingham-Papanastasiou fluids by an extra stress-pressure-velocity galerkin least-squares methodinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000779321.pdf000779321.pdfTexto completo (inglês)application/pdf706598http://www.lume.ufrgs.br/bitstream/10183/75845/1/000779321.pdf367c8f78e650ef150f10c6e3a66d1297MD51TEXT000779321.pdf.txt000779321.pdf.txtExtracted Texttext/plain43331http://www.lume.ufrgs.br/bitstream/10183/75845/2/000779321.pdf.txt9009a28d463d3dc008df597a38f2eb14MD52THUMBNAIL000779321.pdf.jpg000779321.pdf.jpgGenerated Thumbnailimage/jpeg2111http://www.lume.ufrgs.br/bitstream/10183/75845/3/000779321.pdf.jpg58a54b8e15c045453c93046642157ca1MD5310183/758452022-06-03 04:34:36.539507oai:www.lume.ufrgs.br:10183/75845Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2022-06-03T07:34:36Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv A numerical investigation of inertia flows of Bingham-Papanastasiou fluids by an extra stress-pressure-velocity galerkin least-squares method
title A numerical investigation of inertia flows of Bingham-Papanastasiou fluids by an extra stress-pressure-velocity galerkin least-squares method
spellingShingle A numerical investigation of inertia flows of Bingham-Papanastasiou fluids by an extra stress-pressure-velocity galerkin least-squares method
Soto, Hilda Pari
Elementos finitos
Mecânica dos fluidos
Simulação numérica
Viscoplasticity
Bingham model
Papanastasiou regularization
Inertia effects
Multi-field Galerkin least-squares method
title_short A numerical investigation of inertia flows of Bingham-Papanastasiou fluids by an extra stress-pressure-velocity galerkin least-squares method
title_full A numerical investigation of inertia flows of Bingham-Papanastasiou fluids by an extra stress-pressure-velocity galerkin least-squares method
title_fullStr A numerical investigation of inertia flows of Bingham-Papanastasiou fluids by an extra stress-pressure-velocity galerkin least-squares method
title_full_unstemmed A numerical investigation of inertia flows of Bingham-Papanastasiou fluids by an extra stress-pressure-velocity galerkin least-squares method
title_sort A numerical investigation of inertia flows of Bingham-Papanastasiou fluids by an extra stress-pressure-velocity galerkin least-squares method
author Soto, Hilda Pari
author_facet Soto, Hilda Pari
Martins-Costa, Maria Laura
Fonseca, Cleiton Elsner da
Frey, Sérgio Luiz
author_role author
author2 Martins-Costa, Maria Laura
Fonseca, Cleiton Elsner da
Frey, Sérgio Luiz
author2_role author
author
author
dc.contributor.author.fl_str_mv Soto, Hilda Pari
Martins-Costa, Maria Laura
Fonseca, Cleiton Elsner da
Frey, Sérgio Luiz
dc.subject.por.fl_str_mv Elementos finitos
Mecânica dos fluidos
Simulação numérica
topic Elementos finitos
Mecânica dos fluidos
Simulação numérica
Viscoplasticity
Bingham model
Papanastasiou regularization
Inertia effects
Multi-field Galerkin least-squares method
dc.subject.eng.fl_str_mv Viscoplasticity
Bingham model
Papanastasiou regularization
Inertia effects
Multi-field Galerkin least-squares method
description This article is concerned with finite element approximations for yield stress fluid flows through a sudden planar expansion. The mechanical model is composed by mass and momentum balance equations, coupled with the Bingham viscoplastic model regularized by Papanastasiou (1987) equation. A multi-field Galerkin least-squares method in terms of stress, velocity and pressure is employed to approximate the flows. This method is built to circumvent compatibility conditions involving pressure-velocity and stress-velocity finite element subspaces. In addition, thanks to an appropriate design of its stability parameters, it is able to remain stable and accurate in high Bingham and Reynolds flows. Numerical simulations concerning the flow of a regularized Bingham fluid through a one-to-four sudden planar expansion are performed. For creeping flows, yield stress effects on the fluid dynamics of viscoplastic materials are investigated through the ranging of Bingham number from 0.2 to 100. In the sequence, inertia effects are accounted for ranging the Reynolds number from 0 to 50. The numerical results are able to characterize accurately the morphology of yield surfaces in high Bingham flows subjected to inertia.
publishDate 2010
dc.date.issued.fl_str_mv 2010
dc.date.accessioned.fl_str_mv 2013-07-11T02:23:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/75845
dc.identifier.issn.pt_BR.fl_str_mv 1806-3691
dc.identifier.nrb.pt_BR.fl_str_mv 000779321
identifier_str_mv 1806-3691
000779321
url http://hdl.handle.net/10183/75845
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering. Rio de Janeiro, RJ. Vol. 32, no. 5 - special issue (Dec. 2010), p. 450-460
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/75845/1/000779321.pdf
http://www.lume.ufrgs.br/bitstream/10183/75845/2/000779321.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/75845/3/000779321.pdf.jpg
bitstream.checksum.fl_str_mv 367c8f78e650ef150f10c6e3a66d1297
9009a28d463d3dc008df597a38f2eb14
58a54b8e15c045453c93046642157ca1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447499660328960