Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles

Detalhes bibliográficos
Autor(a) principal: Backes, Lucas Henrique
Data de Publicação: 2019
Outros Autores: Dragičević, Davor
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/205537
Resumo: We prove that for semi-invertible and Hölder continuous linear cocycles A acting on an arbitrary Banach space and defined over a base space that satisfies the Anosov closing property, all exceptional Lyapunov exponents of A with respect to an ergodic invariant measure for base dynamics can be approximated with Lyapunov exponents of A with respect to ergodic measures supported on periodic orbits. Our result is applicable to a wide class of infinite-dimensional dynamical systems.
id UFRGS-2_bb3c49d1551f6b71dd161c4283d5831e
oai_identifier_str oai:www.lume.ufrgs.br:10183/205537
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Backes, Lucas HenriqueDragičević, Davor2020-02-06T04:18:02Z20191798-2383http://hdl.handle.net/10183/205537001103369We prove that for semi-invertible and Hölder continuous linear cocycles A acting on an arbitrary Banach space and defined over a base space that satisfies the Anosov closing property, all exceptional Lyapunov exponents of A with respect to an ergodic invariant measure for base dynamics can be approximated with Lyapunov exponents of A with respect to ergodic measures supported on periodic orbits. Our result is applicable to a wide class of infinite-dimensional dynamical systems.application/pdfengAnnales Academiæ Scientiarum Fennicæ. Helsinki, Finland, Academia Scientiarum Fennica, 2019. Vol. 44, 2019, p. 183 – 209Expoentes de LyapunovSubespaços invariantesContinuidadeEspaço de BanachPeriodic approximation of exceptional lyapunov exponents for semi-invertible operator cocyclesEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001103369.pdf.txt001103369.pdf.txtExtracted Texttext/plain65600http://www.lume.ufrgs.br/bitstream/10183/205537/2/001103369.pdf.txt01ef9f9f02847a8d892d8f493c4fa4edMD52ORIGINAL001103369.pdfTexto completo (inglês)application/pdf305460http://www.lume.ufrgs.br/bitstream/10183/205537/1/001103369.pdf0f64d276d713c31865f2b5c5a7b3c587MD5110183/2055372020-02-22 04:22:19.556311oai:www.lume.ufrgs.br:10183/205537Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2020-02-22T07:22:19Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles
title Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles
spellingShingle Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles
Backes, Lucas Henrique
Expoentes de Lyapunov
Subespaços invariantes
Continuidade
Espaço de Banach
title_short Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles
title_full Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles
title_fullStr Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles
title_full_unstemmed Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles
title_sort Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles
author Backes, Lucas Henrique
author_facet Backes, Lucas Henrique
Dragičević, Davor
author_role author
author2 Dragičević, Davor
author2_role author
dc.contributor.author.fl_str_mv Backes, Lucas Henrique
Dragičević, Davor
dc.subject.por.fl_str_mv Expoentes de Lyapunov
Subespaços invariantes
Continuidade
Espaço de Banach
topic Expoentes de Lyapunov
Subespaços invariantes
Continuidade
Espaço de Banach
description We prove that for semi-invertible and Hölder continuous linear cocycles A acting on an arbitrary Banach space and defined over a base space that satisfies the Anosov closing property, all exceptional Lyapunov exponents of A with respect to an ergodic invariant measure for base dynamics can be approximated with Lyapunov exponents of A with respect to ergodic measures supported on periodic orbits. Our result is applicable to a wide class of infinite-dimensional dynamical systems.
publishDate 2019
dc.date.issued.fl_str_mv 2019
dc.date.accessioned.fl_str_mv 2020-02-06T04:18:02Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/205537
dc.identifier.issn.pt_BR.fl_str_mv 1798-2383
dc.identifier.nrb.pt_BR.fl_str_mv 001103369
identifier_str_mv 1798-2383
001103369
url http://hdl.handle.net/10183/205537
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Annales Academiæ Scientiarum Fennicæ. Helsinki, Finland, Academia Scientiarum Fennica, 2019. Vol. 44, 2019, p. 183 – 209
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/205537/2/001103369.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/205537/1/001103369.pdf
bitstream.checksum.fl_str_mv 01ef9f9f02847a8d892d8f493c4fa4ed
0f64d276d713c31865f2b5c5a7b3c587
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447707271036928