Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/205537 |
Resumo: | We prove that for semi-invertible and Hölder continuous linear cocycles A acting on an arbitrary Banach space and defined over a base space that satisfies the Anosov closing property, all exceptional Lyapunov exponents of A with respect to an ergodic invariant measure for base dynamics can be approximated with Lyapunov exponents of A with respect to ergodic measures supported on periodic orbits. Our result is applicable to a wide class of infinite-dimensional dynamical systems. |
id |
UFRGS-2_bb3c49d1551f6b71dd161c4283d5831e |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/205537 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Backes, Lucas HenriqueDragičević, Davor2020-02-06T04:18:02Z20191798-2383http://hdl.handle.net/10183/205537001103369We prove that for semi-invertible and Hölder continuous linear cocycles A acting on an arbitrary Banach space and defined over a base space that satisfies the Anosov closing property, all exceptional Lyapunov exponents of A with respect to an ergodic invariant measure for base dynamics can be approximated with Lyapunov exponents of A with respect to ergodic measures supported on periodic orbits. Our result is applicable to a wide class of infinite-dimensional dynamical systems.application/pdfengAnnales Academiæ Scientiarum Fennicæ. Helsinki, Finland, Academia Scientiarum Fennica, 2019. Vol. 44, 2019, p. 183 – 209Expoentes de LyapunovSubespaços invariantesContinuidadeEspaço de BanachPeriodic approximation of exceptional lyapunov exponents for semi-invertible operator cocyclesEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001103369.pdf.txt001103369.pdf.txtExtracted Texttext/plain65600http://www.lume.ufrgs.br/bitstream/10183/205537/2/001103369.pdf.txt01ef9f9f02847a8d892d8f493c4fa4edMD52ORIGINAL001103369.pdfTexto completo (inglês)application/pdf305460http://www.lume.ufrgs.br/bitstream/10183/205537/1/001103369.pdf0f64d276d713c31865f2b5c5a7b3c587MD5110183/2055372020-02-22 04:22:19.556311oai:www.lume.ufrgs.br:10183/205537Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2020-02-22T07:22:19Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles |
title |
Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles |
spellingShingle |
Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles Backes, Lucas Henrique Expoentes de Lyapunov Subespaços invariantes Continuidade Espaço de Banach |
title_short |
Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles |
title_full |
Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles |
title_fullStr |
Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles |
title_full_unstemmed |
Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles |
title_sort |
Periodic approximation of exceptional lyapunov exponents for semi-invertible operator cocycles |
author |
Backes, Lucas Henrique |
author_facet |
Backes, Lucas Henrique Dragičević, Davor |
author_role |
author |
author2 |
Dragičević, Davor |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Backes, Lucas Henrique Dragičević, Davor |
dc.subject.por.fl_str_mv |
Expoentes de Lyapunov Subespaços invariantes Continuidade Espaço de Banach |
topic |
Expoentes de Lyapunov Subespaços invariantes Continuidade Espaço de Banach |
description |
We prove that for semi-invertible and Hölder continuous linear cocycles A acting on an arbitrary Banach space and defined over a base space that satisfies the Anosov closing property, all exceptional Lyapunov exponents of A with respect to an ergodic invariant measure for base dynamics can be approximated with Lyapunov exponents of A with respect to ergodic measures supported on periodic orbits. Our result is applicable to a wide class of infinite-dimensional dynamical systems. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019 |
dc.date.accessioned.fl_str_mv |
2020-02-06T04:18:02Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/205537 |
dc.identifier.issn.pt_BR.fl_str_mv |
1798-2383 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001103369 |
identifier_str_mv |
1798-2383 001103369 |
url |
http://hdl.handle.net/10183/205537 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Annales Academiæ Scientiarum Fennicæ. Helsinki, Finland, Academia Scientiarum Fennica, 2019. Vol. 44, 2019, p. 183 – 209 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/205537/2/001103369.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/205537/1/001103369.pdf |
bitstream.checksum.fl_str_mv |
01ef9f9f02847a8d892d8f493c4fa4ed 0f64d276d713c31865f2b5c5a7b3c587 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447707271036928 |