Influence of the thermal processing and doping on LaMnO3 and La0.8A0.2MnO3 (A = Ca, Sr, Ba) perovskites prepared by auto-combustion for removal of VOCs

Detalhes bibliográficos
Autor(a) principal: Di Benedetto, Natasha
Data de Publicação: 2022
Outros Autores: De Los Santos, Carolina, Yeste Sigüenza, María Del Pilar, Morais, Jonder, Alves, Maria do Carmo Martins, Amaya, Alejandro, Suescun, Leopoldo, Gatica Casas, José Manuel, Vidal Muñoz, Hilario, Castiglioni, Jorge
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/254635
Resumo: Single-phase oxygen stoichiometric LaMnO3 and doped La0.8A0.2MnO3 (A = Ca, Sr, Ba) perovskites have been prepared by a simple one-step auto-combustion method. Cation-deficient LaMnO3+δ and La0.8A0.2MnO3+δ were obtained by calcination of the former samples in air at 750 ◦C. The samples were characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction, temperature-programmed oxygen desorption, and N2 ph ysisorption in order to apply them as catalysts in the complete catalytic oxidation of acetone as a model volatile organic compound. The studied phases show the expected orthorhombic and rhombohedral perovskite crystal structures. Catalytic experiments performed with all the samples show measurable activity already at 100 ◦C. At 200 ◦C, doped La0.8A0.2MnO3 samples show higher activity than undoped LaMnO3, with increasing conversion with larger A-cation size. Calcined samples also show higher activity than as-prepared ones making La0.8Ba0.2MnO3+δ the best catalyst at this temperature. All doped samples show >95% acetone conversion at T ≥ 250 ◦C with a weak dependence on the sample processing or A cation doping. The collected evidence confirms that the most important factors for the catalytic activity of these oxides are the Mn4+/Mn3+ molar ratio on the surface of the samples and the cation-deficiency of the bulk perovskite structure. In addition, increasing the symmetry of the bulk crystal structure appears to have an additional favourable effect. Despite the observation of the presence of surface carbonates, we show that it is possible to use the as-prepared samples without further thermal treatment with good results in the oxidation of acetone.
id UFRGS-2_bfb9a25603cce6c0d3814e74611c44e5
oai_identifier_str oai:www.lume.ufrgs.br:10183/254635
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Di Benedetto, NatashaDe Los Santos, CarolinaYeste Sigüenza, María Del PilarMorais, JonderAlves, Maria do Carmo MartinsAmaya, AlejandroSuescun, LeopoldoGatica Casas, José ManuelVidal Muñoz, HilarioCastiglioni, Jorge2023-02-10T04:57:42Z20222073-4344http://hdl.handle.net/10183/254635001154775Single-phase oxygen stoichiometric LaMnO3 and doped La0.8A0.2MnO3 (A = Ca, Sr, Ba) perovskites have been prepared by a simple one-step auto-combustion method. Cation-deficient LaMnO3+δ and La0.8A0.2MnO3+δ were obtained by calcination of the former samples in air at 750 ◦C. The samples were characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction, temperature-programmed oxygen desorption, and N2 ph ysisorption in order to apply them as catalysts in the complete catalytic oxidation of acetone as a model volatile organic compound. The studied phases show the expected orthorhombic and rhombohedral perovskite crystal structures. Catalytic experiments performed with all the samples show measurable activity already at 100 ◦C. At 200 ◦C, doped La0.8A0.2MnO3 samples show higher activity than undoped LaMnO3, with increasing conversion with larger A-cation size. Calcined samples also show higher activity than as-prepared ones making La0.8Ba0.2MnO3+δ the best catalyst at this temperature. All doped samples show >95% acetone conversion at T ≥ 250 ◦C with a weak dependence on the sample processing or A cation doping. The collected evidence confirms that the most important factors for the catalytic activity of these oxides are the Mn4+/Mn3+ molar ratio on the surface of the samples and the cation-deficiency of the bulk perovskite structure. In addition, increasing the symmetry of the bulk crystal structure appears to have an additional favourable effect. Despite the observation of the presence of surface carbonates, we show that it is possible to use the as-prepared samples without further thermal treatment with good results in the oxidation of acetone.application/pdfengCatalysts. Basel. Vol. 12, no. 8 (Aug. 2022), 865, 18 p.PerovskitaDopagemCatáliseVOCPerovskitesCatalytic oxidationAcetoneAuto-combustion synthesisInfluence of the thermal processing and doping on LaMnO3 and La0.8A0.2MnO3 (A = Ca, Sr, Ba) perovskites prepared by auto-combustion for removal of VOCsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001154775.pdf.txt001154775.pdf.txtExtracted Texttext/plain57507http://www.lume.ufrgs.br/bitstream/10183/254635/2/001154775.pdf.txt9849ff685ebb133fa2a7fd4638fb947bMD52ORIGINAL001154775.pdfTexto completo (inglês)application/pdf2038976http://www.lume.ufrgs.br/bitstream/10183/254635/1/001154775.pdf777578a0d0c38151fdc9f7444518917cMD5110183/2546352023-07-19 03:41:29.509925oai:www.lume.ufrgs.br:10183/254635Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-07-19T06:41:29Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Influence of the thermal processing and doping on LaMnO3 and La0.8A0.2MnO3 (A = Ca, Sr, Ba) perovskites prepared by auto-combustion for removal of VOCs
title Influence of the thermal processing and doping on LaMnO3 and La0.8A0.2MnO3 (A = Ca, Sr, Ba) perovskites prepared by auto-combustion for removal of VOCs
spellingShingle Influence of the thermal processing and doping on LaMnO3 and La0.8A0.2MnO3 (A = Ca, Sr, Ba) perovskites prepared by auto-combustion for removal of VOCs
Di Benedetto, Natasha
Perovskita
Dopagem
Catálise
VOC
Perovskites
Catalytic oxidation
Acetone
Auto-combustion synthesis
title_short Influence of the thermal processing and doping on LaMnO3 and La0.8A0.2MnO3 (A = Ca, Sr, Ba) perovskites prepared by auto-combustion for removal of VOCs
title_full Influence of the thermal processing and doping on LaMnO3 and La0.8A0.2MnO3 (A = Ca, Sr, Ba) perovskites prepared by auto-combustion for removal of VOCs
title_fullStr Influence of the thermal processing and doping on LaMnO3 and La0.8A0.2MnO3 (A = Ca, Sr, Ba) perovskites prepared by auto-combustion for removal of VOCs
title_full_unstemmed Influence of the thermal processing and doping on LaMnO3 and La0.8A0.2MnO3 (A = Ca, Sr, Ba) perovskites prepared by auto-combustion for removal of VOCs
title_sort Influence of the thermal processing and doping on LaMnO3 and La0.8A0.2MnO3 (A = Ca, Sr, Ba) perovskites prepared by auto-combustion for removal of VOCs
author Di Benedetto, Natasha
author_facet Di Benedetto, Natasha
De Los Santos, Carolina
Yeste Sigüenza, María Del Pilar
Morais, Jonder
Alves, Maria do Carmo Martins
Amaya, Alejandro
Suescun, Leopoldo
Gatica Casas, José Manuel
Vidal Muñoz, Hilario
Castiglioni, Jorge
author_role author
author2 De Los Santos, Carolina
Yeste Sigüenza, María Del Pilar
Morais, Jonder
Alves, Maria do Carmo Martins
Amaya, Alejandro
Suescun, Leopoldo
Gatica Casas, José Manuel
Vidal Muñoz, Hilario
Castiglioni, Jorge
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Di Benedetto, Natasha
De Los Santos, Carolina
Yeste Sigüenza, María Del Pilar
Morais, Jonder
Alves, Maria do Carmo Martins
Amaya, Alejandro
Suescun, Leopoldo
Gatica Casas, José Manuel
Vidal Muñoz, Hilario
Castiglioni, Jorge
dc.subject.por.fl_str_mv Perovskita
Dopagem
Catálise
topic Perovskita
Dopagem
Catálise
VOC
Perovskites
Catalytic oxidation
Acetone
Auto-combustion synthesis
dc.subject.eng.fl_str_mv VOC
Perovskites
Catalytic oxidation
Acetone
Auto-combustion synthesis
description Single-phase oxygen stoichiometric LaMnO3 and doped La0.8A0.2MnO3 (A = Ca, Sr, Ba) perovskites have been prepared by a simple one-step auto-combustion method. Cation-deficient LaMnO3+δ and La0.8A0.2MnO3+δ were obtained by calcination of the former samples in air at 750 ◦C. The samples were characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction, temperature-programmed oxygen desorption, and N2 ph ysisorption in order to apply them as catalysts in the complete catalytic oxidation of acetone as a model volatile organic compound. The studied phases show the expected orthorhombic and rhombohedral perovskite crystal structures. Catalytic experiments performed with all the samples show measurable activity already at 100 ◦C. At 200 ◦C, doped La0.8A0.2MnO3 samples show higher activity than undoped LaMnO3, with increasing conversion with larger A-cation size. Calcined samples also show higher activity than as-prepared ones making La0.8Ba0.2MnO3+δ the best catalyst at this temperature. All doped samples show >95% acetone conversion at T ≥ 250 ◦C with a weak dependence on the sample processing or A cation doping. The collected evidence confirms that the most important factors for the catalytic activity of these oxides are the Mn4+/Mn3+ molar ratio on the surface of the samples and the cation-deficiency of the bulk perovskite structure. In addition, increasing the symmetry of the bulk crystal structure appears to have an additional favourable effect. Despite the observation of the presence of surface carbonates, we show that it is possible to use the as-prepared samples without further thermal treatment with good results in the oxidation of acetone.
publishDate 2022
dc.date.issued.fl_str_mv 2022
dc.date.accessioned.fl_str_mv 2023-02-10T04:57:42Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/254635
dc.identifier.issn.pt_BR.fl_str_mv 2073-4344
dc.identifier.nrb.pt_BR.fl_str_mv 001154775
identifier_str_mv 2073-4344
001154775
url http://hdl.handle.net/10183/254635
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Catalysts. Basel. Vol. 12, no. 8 (Aug. 2022), 865, 18 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/254635/2/001154775.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/254635/1/001154775.pdf
bitstream.checksum.fl_str_mv 9849ff685ebb133fa2a7fd4638fb947b
777578a0d0c38151fdc9f7444518917c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1801225080844320768