Fractionally integrated moving average stable processes with long-range dependence

Detalhes bibliográficos
Autor(a) principal: Feltes, Guilherme de Lima
Data de Publicação: 2022
Outros Autores: Lopes, Silvia Regina Costa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/246957
Resumo: Long memory processes driven by Lévy noise with finite second-order moments have been well studied in the literature. They form a very rich class of processes presenting an autocovariance function that decays like a power function. Here, we study a class of Lévy processes whose second-order moments are infinite, the so-called α-stable processes. Based on Samorodnitsky and Taqqu (1994), we construct an isometry that allows us to define stochastic integrals concerning the linear fractional stable motion using Riemann-Liouville fractional integrals. With this construction, an integration by parts formula follows naturally. We then present a family of stationary SαS processes with the property of long-range dependence, using a generalized measure to investigate its dependence structure. At the end, the law of large number’s result for a time’s sample of the process is shown as an application of the isometry and integration by parts formula.
id UFRGS-2_c08fd8d7f51ca3c2fe8d2de7ac969a73
oai_identifier_str oai:www.lume.ufrgs.br:10183/246957
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Feltes, Guilherme de LimaLopes, Silvia Regina Costa2022-08-16T04:47:02Z20221980-0436http://hdl.handle.net/10183/246957001140999Long memory processes driven by Lévy noise with finite second-order moments have been well studied in the literature. They form a very rich class of processes presenting an autocovariance function that decays like a power function. Here, we study a class of Lévy processes whose second-order moments are infinite, the so-called α-stable processes. Based on Samorodnitsky and Taqqu (1994), we construct an isometry that allows us to define stochastic integrals concerning the linear fractional stable motion using Riemann-Liouville fractional integrals. With this construction, an integration by parts formula follows naturally. We then present a family of stationary SαS processes with the property of long-range dependence, using a generalized measure to investigate its dependence structure. At the end, the law of large number’s result for a time’s sample of the process is shown as an application of the isometry and integration by parts formula.application/pdfengALEA - Latin American Journal of Probability and Mathematical Statistics. Rio de janeiro. Vol. 19, (2022), p. 599 - 615Dependência de longo alcanceProcesso de levyIsometriasFractionally integrated moving average stable processesLong-range dependenceLinear fractional stable motionFractionally integrated moving average stable processes with long-range dependenceinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001140999.pdf.txt001140999.pdf.txtExtracted Texttext/plain41153http://www.lume.ufrgs.br/bitstream/10183/246957/2/001140999.pdf.txtcea5ed37eb16dcd1fbca2f171bc15ff1MD52ORIGINAL001140999.pdfTexto completo (inglês)application/pdf514297http://www.lume.ufrgs.br/bitstream/10183/246957/1/001140999.pdfd8fb5bcee4f0e2964376787ebafa26e0MD5110183/2469572022-08-17 04:48:44.751433oai:www.lume.ufrgs.br:10183/246957Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2022-08-17T07:48:44Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Fractionally integrated moving average stable processes with long-range dependence
title Fractionally integrated moving average stable processes with long-range dependence
spellingShingle Fractionally integrated moving average stable processes with long-range dependence
Feltes, Guilherme de Lima
Dependência de longo alcance
Processo de levy
Isometrias
Fractionally integrated moving average stable processes
Long-range dependence
Linear fractional stable motion
title_short Fractionally integrated moving average stable processes with long-range dependence
title_full Fractionally integrated moving average stable processes with long-range dependence
title_fullStr Fractionally integrated moving average stable processes with long-range dependence
title_full_unstemmed Fractionally integrated moving average stable processes with long-range dependence
title_sort Fractionally integrated moving average stable processes with long-range dependence
author Feltes, Guilherme de Lima
author_facet Feltes, Guilherme de Lima
Lopes, Silvia Regina Costa
author_role author
author2 Lopes, Silvia Regina Costa
author2_role author
dc.contributor.author.fl_str_mv Feltes, Guilherme de Lima
Lopes, Silvia Regina Costa
dc.subject.por.fl_str_mv Dependência de longo alcance
Processo de levy
Isometrias
topic Dependência de longo alcance
Processo de levy
Isometrias
Fractionally integrated moving average stable processes
Long-range dependence
Linear fractional stable motion
dc.subject.eng.fl_str_mv Fractionally integrated moving average stable processes
Long-range dependence
Linear fractional stable motion
description Long memory processes driven by Lévy noise with finite second-order moments have been well studied in the literature. They form a very rich class of processes presenting an autocovariance function that decays like a power function. Here, we study a class of Lévy processes whose second-order moments are infinite, the so-called α-stable processes. Based on Samorodnitsky and Taqqu (1994), we construct an isometry that allows us to define stochastic integrals concerning the linear fractional stable motion using Riemann-Liouville fractional integrals. With this construction, an integration by parts formula follows naturally. We then present a family of stationary SαS processes with the property of long-range dependence, using a generalized measure to investigate its dependence structure. At the end, the law of large number’s result for a time’s sample of the process is shown as an application of the isometry and integration by parts formula.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-08-16T04:47:02Z
dc.date.issued.fl_str_mv 2022
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/246957
dc.identifier.issn.pt_BR.fl_str_mv 1980-0436
dc.identifier.nrb.pt_BR.fl_str_mv 001140999
identifier_str_mv 1980-0436
001140999
url http://hdl.handle.net/10183/246957
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv ALEA - Latin American Journal of Probability and Mathematical Statistics. Rio de janeiro. Vol. 19, (2022), p. 599 - 615
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/246957/2/001140999.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/246957/1/001140999.pdf
bitstream.checksum.fl_str_mv cea5ed37eb16dcd1fbca2f171bc15ff1
d8fb5bcee4f0e2964376787ebafa26e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447801433161728