Fractionally integrated moving average stable processes with long-range dependence
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/246957 |
Resumo: | Long memory processes driven by Lévy noise with finite second-order moments have been well studied in the literature. They form a very rich class of processes presenting an autocovariance function that decays like a power function. Here, we study a class of Lévy processes whose second-order moments are infinite, the so-called α-stable processes. Based on Samorodnitsky and Taqqu (1994), we construct an isometry that allows us to define stochastic integrals concerning the linear fractional stable motion using Riemann-Liouville fractional integrals. With this construction, an integration by parts formula follows naturally. We then present a family of stationary SαS processes with the property of long-range dependence, using a generalized measure to investigate its dependence structure. At the end, the law of large number’s result for a time’s sample of the process is shown as an application of the isometry and integration by parts formula. |
id |
UFRGS-2_c08fd8d7f51ca3c2fe8d2de7ac969a73 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/246957 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Feltes, Guilherme de LimaLopes, Silvia Regina Costa2022-08-16T04:47:02Z20221980-0436http://hdl.handle.net/10183/246957001140999Long memory processes driven by Lévy noise with finite second-order moments have been well studied in the literature. They form a very rich class of processes presenting an autocovariance function that decays like a power function. Here, we study a class of Lévy processes whose second-order moments are infinite, the so-called α-stable processes. Based on Samorodnitsky and Taqqu (1994), we construct an isometry that allows us to define stochastic integrals concerning the linear fractional stable motion using Riemann-Liouville fractional integrals. With this construction, an integration by parts formula follows naturally. We then present a family of stationary SαS processes with the property of long-range dependence, using a generalized measure to investigate its dependence structure. At the end, the law of large number’s result for a time’s sample of the process is shown as an application of the isometry and integration by parts formula.application/pdfengALEA - Latin American Journal of Probability and Mathematical Statistics. Rio de janeiro. Vol. 19, (2022), p. 599 - 615Dependência de longo alcanceProcesso de levyIsometriasFractionally integrated moving average stable processesLong-range dependenceLinear fractional stable motionFractionally integrated moving average stable processes with long-range dependenceinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001140999.pdf.txt001140999.pdf.txtExtracted Texttext/plain41153http://www.lume.ufrgs.br/bitstream/10183/246957/2/001140999.pdf.txtcea5ed37eb16dcd1fbca2f171bc15ff1MD52ORIGINAL001140999.pdfTexto completo (inglês)application/pdf514297http://www.lume.ufrgs.br/bitstream/10183/246957/1/001140999.pdfd8fb5bcee4f0e2964376787ebafa26e0MD5110183/2469572022-08-17 04:48:44.751433oai:www.lume.ufrgs.br:10183/246957Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2022-08-17T07:48:44Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Fractionally integrated moving average stable processes with long-range dependence |
title |
Fractionally integrated moving average stable processes with long-range dependence |
spellingShingle |
Fractionally integrated moving average stable processes with long-range dependence Feltes, Guilherme de Lima Dependência de longo alcance Processo de levy Isometrias Fractionally integrated moving average stable processes Long-range dependence Linear fractional stable motion |
title_short |
Fractionally integrated moving average stable processes with long-range dependence |
title_full |
Fractionally integrated moving average stable processes with long-range dependence |
title_fullStr |
Fractionally integrated moving average stable processes with long-range dependence |
title_full_unstemmed |
Fractionally integrated moving average stable processes with long-range dependence |
title_sort |
Fractionally integrated moving average stable processes with long-range dependence |
author |
Feltes, Guilherme de Lima |
author_facet |
Feltes, Guilherme de Lima Lopes, Silvia Regina Costa |
author_role |
author |
author2 |
Lopes, Silvia Regina Costa |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Feltes, Guilherme de Lima Lopes, Silvia Regina Costa |
dc.subject.por.fl_str_mv |
Dependência de longo alcance Processo de levy Isometrias |
topic |
Dependência de longo alcance Processo de levy Isometrias Fractionally integrated moving average stable processes Long-range dependence Linear fractional stable motion |
dc.subject.eng.fl_str_mv |
Fractionally integrated moving average stable processes Long-range dependence Linear fractional stable motion |
description |
Long memory processes driven by Lévy noise with finite second-order moments have been well studied in the literature. They form a very rich class of processes presenting an autocovariance function that decays like a power function. Here, we study a class of Lévy processes whose second-order moments are infinite, the so-called α-stable processes. Based on Samorodnitsky and Taqqu (1994), we construct an isometry that allows us to define stochastic integrals concerning the linear fractional stable motion using Riemann-Liouville fractional integrals. With this construction, an integration by parts formula follows naturally. We then present a family of stationary SαS processes with the property of long-range dependence, using a generalized measure to investigate its dependence structure. At the end, the law of large number’s result for a time’s sample of the process is shown as an application of the isometry and integration by parts formula. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-08-16T04:47:02Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/246957 |
dc.identifier.issn.pt_BR.fl_str_mv |
1980-0436 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001140999 |
identifier_str_mv |
1980-0436 001140999 |
url |
http://hdl.handle.net/10183/246957 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
ALEA - Latin American Journal of Probability and Mathematical Statistics. Rio de janeiro. Vol. 19, (2022), p. 599 - 615 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/246957/2/001140999.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/246957/1/001140999.pdf |
bitstream.checksum.fl_str_mv |
cea5ed37eb16dcd1fbca2f171bc15ff1 d8fb5bcee4f0e2964376787ebafa26e0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447801433161728 |