Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/21690 |
Resumo: | Background: Iron-sulfur clusters are ubiquitous and evolutionarily ancient inorganic prosthetic groups, the biosynthesis of which depends on complex protein machineries. Three distinct assembly systems involved in the maturation of cellular Fe-S proteins have been determined, designated the NIF, ISC and SUF systems. Although well described in several organisms, these machineries are poorly understood in Gram-positive bacteria. Within the Firmicutes phylum, the Enterococcus spp. genus have recently assumed importance in clinical microbiology being considered as emerging pathogens for humans, wherein Enterococcus faecalis represents the major species associated with nosocomial infections. The aim of this study was to carry out a phylogenetic analysis in Enterococcus faecalis V583 and a structural and conformational characterisation of it SufU protein. Results: BLAST searches of the Enterococcus genome revealed a series of genes with sequence similarity to the Escherichia coli SUF machinery of [Fe-S] cluster biosynthesis, namely sufB, sufC, sufD and SufS. In addition, the E. coli IscU ortholog SufU was found to be the scaffold protein of Enterococcus spp., containing all features considered essential for its biological activity, including conserved amino acid residues involved in substrate and/or co-factor binding (Cys50,76,138 and Asp52) and, phylogenetic analyses showed a close relationship with orthologues from other Gram-positive bacteria. Molecular dynamics for structural determinations and molecular modeling using E. faecalis SufU primary sequence protein over the PDB:1su0 crystallographic model from Streptococcus pyogenes were carried out with a subsequent 50 ns molecular dynamic trajectory. This presented a stable model, showing secondary structure modifications near the active site and conserved cysteine residues. Molecular modeling using Haemophilus influenzae IscU primary sequence over the PDB:1su0 crystal followed by a MD trajectory was performed to analyse differences in the C-terminus region of Gram-positive SufU and Gram-negative orthologous proteins, in which several modifications in secondary structure were observed. Conclusion: The data describe the identification of the SUF machinery for [Fe-S] cluster biosynthesis present in the Firmicutes genome, showing conserved sufB, sufC, sufD and sufS genes and the presence of the sufU gene coding for scaffold protein, instead of sufA; neither sufE nor sufR are present. Primary sequences and structural analysis of the SufU protein demonstrated its structural-like pattern to the scaffold protein IscU nearby on the ISC machinery. E. faecalis SufU molecular modeling showed high flexibility over the active site regions, and demonstrated the existence of a specific region in Firmicutes denoting the Gram positive region (GPR), suggested asa possible candidate for interaction with other factors and/or regulators. |
id |
UFRGS-2_c36396909fdb6b45892498ae8ac84b91 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/21690 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Riboldi, Gustavo PelicioliVerli, HugoFrazzon, Jeverson2010-05-07T04:15:27Z20091471-2091http://hdl.handle.net/10183/21690000689438Background: Iron-sulfur clusters are ubiquitous and evolutionarily ancient inorganic prosthetic groups, the biosynthesis of which depends on complex protein machineries. Three distinct assembly systems involved in the maturation of cellular Fe-S proteins have been determined, designated the NIF, ISC and SUF systems. Although well described in several organisms, these machineries are poorly understood in Gram-positive bacteria. Within the Firmicutes phylum, the Enterococcus spp. genus have recently assumed importance in clinical microbiology being considered as emerging pathogens for humans, wherein Enterococcus faecalis represents the major species associated with nosocomial infections. The aim of this study was to carry out a phylogenetic analysis in Enterococcus faecalis V583 and a structural and conformational characterisation of it SufU protein. Results: BLAST searches of the Enterococcus genome revealed a series of genes with sequence similarity to the Escherichia coli SUF machinery of [Fe-S] cluster biosynthesis, namely sufB, sufC, sufD and SufS. In addition, the E. coli IscU ortholog SufU was found to be the scaffold protein of Enterococcus spp., containing all features considered essential for its biological activity, including conserved amino acid residues involved in substrate and/or co-factor binding (Cys50,76,138 and Asp52) and, phylogenetic analyses showed a close relationship with orthologues from other Gram-positive bacteria. Molecular dynamics for structural determinations and molecular modeling using E. faecalis SufU primary sequence protein over the PDB:1su0 crystallographic model from Streptococcus pyogenes were carried out with a subsequent 50 ns molecular dynamic trajectory. This presented a stable model, showing secondary structure modifications near the active site and conserved cysteine residues. Molecular modeling using Haemophilus influenzae IscU primary sequence over the PDB:1su0 crystal followed by a MD trajectory was performed to analyse differences in the C-terminus region of Gram-positive SufU and Gram-negative orthologous proteins, in which several modifications in secondary structure were observed. Conclusion: The data describe the identification of the SUF machinery for [Fe-S] cluster biosynthesis present in the Firmicutes genome, showing conserved sufB, sufC, sufD and sufS genes and the presence of the sufU gene coding for scaffold protein, instead of sufA; neither sufE nor sufR are present. Primary sequences and structural analysis of the SufU protein demonstrated its structural-like pattern to the scaffold protein IscU nearby on the ISC machinery. E. faecalis SufU molecular modeling showed high flexibility over the active site regions, and demonstrated the existence of a specific region in Firmicutes denoting the Gram positive region (GPR), suggested asa possible candidate for interaction with other factors and/or regulators.application/zipapplication/zipapplication/pdfengBMC biochemistry. London. v. 10, art. 3 (2 Feb. 2009)Enterococcus faecalisCofator ferro-enxofreModelagem molecularStructural studies of the Enterococcus faecalis SufU [Fe-S] cluster proteinEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000689438.pdf000689438.pdfTexto completo (inglês)application/pdf817469http://www.lume.ufrgs.br/bitstream/10183/21690/1/000689438.pdf7a5289a7aae6e11036f8919e18cd36ddMD51000689438.zip000689438.zipMaterial suplementarapplication/zip179885http://www.lume.ufrgs.br/bitstream/10183/21690/2/000689438.zipc62825e2bcf58535890c5814a301fdaeMD52000689438-02.zip000689438-02.zipTrabalho completo zipadoapplication/zip939487http://www.lume.ufrgs.br/bitstream/10183/21690/3/000689438-02.zip69b6900f28fac48c9f260bdaac3c4742MD53TEXT000689438.pdf.txt000689438.pdf.txtExtracted Texttext/plain47941http://www.lume.ufrgs.br/bitstream/10183/21690/4/000689438.pdf.txt2ac184011c83c13f3dbfda78827cfbd6MD54THUMBNAIL000689438.pdf.jpg000689438.pdf.jpgGenerated Thumbnailimage/jpeg1992http://www.lume.ufrgs.br/bitstream/10183/21690/5/000689438.pdf.jpg1342f72cb2f5e7f9b9a5251d91ed9d4bMD5510183/216902021-06-12 04:47:29.66437oai:www.lume.ufrgs.br:10183/21690Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-12T07:47:29Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein |
title |
Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein |
spellingShingle |
Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein Riboldi, Gustavo Pelicioli Enterococcus faecalis Cofator ferro-enxofre Modelagem molecular |
title_short |
Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein |
title_full |
Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein |
title_fullStr |
Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein |
title_full_unstemmed |
Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein |
title_sort |
Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein |
author |
Riboldi, Gustavo Pelicioli |
author_facet |
Riboldi, Gustavo Pelicioli Verli, Hugo Frazzon, Jeverson |
author_role |
author |
author2 |
Verli, Hugo Frazzon, Jeverson |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Riboldi, Gustavo Pelicioli Verli, Hugo Frazzon, Jeverson |
dc.subject.por.fl_str_mv |
Enterococcus faecalis Cofator ferro-enxofre Modelagem molecular |
topic |
Enterococcus faecalis Cofator ferro-enxofre Modelagem molecular |
description |
Background: Iron-sulfur clusters are ubiquitous and evolutionarily ancient inorganic prosthetic groups, the biosynthesis of which depends on complex protein machineries. Three distinct assembly systems involved in the maturation of cellular Fe-S proteins have been determined, designated the NIF, ISC and SUF systems. Although well described in several organisms, these machineries are poorly understood in Gram-positive bacteria. Within the Firmicutes phylum, the Enterococcus spp. genus have recently assumed importance in clinical microbiology being considered as emerging pathogens for humans, wherein Enterococcus faecalis represents the major species associated with nosocomial infections. The aim of this study was to carry out a phylogenetic analysis in Enterococcus faecalis V583 and a structural and conformational characterisation of it SufU protein. Results: BLAST searches of the Enterococcus genome revealed a series of genes with sequence similarity to the Escherichia coli SUF machinery of [Fe-S] cluster biosynthesis, namely sufB, sufC, sufD and SufS. In addition, the E. coli IscU ortholog SufU was found to be the scaffold protein of Enterococcus spp., containing all features considered essential for its biological activity, including conserved amino acid residues involved in substrate and/or co-factor binding (Cys50,76,138 and Asp52) and, phylogenetic analyses showed a close relationship with orthologues from other Gram-positive bacteria. Molecular dynamics for structural determinations and molecular modeling using E. faecalis SufU primary sequence protein over the PDB:1su0 crystallographic model from Streptococcus pyogenes were carried out with a subsequent 50 ns molecular dynamic trajectory. This presented a stable model, showing secondary structure modifications near the active site and conserved cysteine residues. Molecular modeling using Haemophilus influenzae IscU primary sequence over the PDB:1su0 crystal followed by a MD trajectory was performed to analyse differences in the C-terminus region of Gram-positive SufU and Gram-negative orthologous proteins, in which several modifications in secondary structure were observed. Conclusion: The data describe the identification of the SUF machinery for [Fe-S] cluster biosynthesis present in the Firmicutes genome, showing conserved sufB, sufC, sufD and sufS genes and the presence of the sufU gene coding for scaffold protein, instead of sufA; neither sufE nor sufR are present. Primary sequences and structural analysis of the SufU protein demonstrated its structural-like pattern to the scaffold protein IscU nearby on the ISC machinery. E. faecalis SufU molecular modeling showed high flexibility over the active site regions, and demonstrated the existence of a specific region in Firmicutes denoting the Gram positive region (GPR), suggested asa possible candidate for interaction with other factors and/or regulators. |
publishDate |
2009 |
dc.date.issued.fl_str_mv |
2009 |
dc.date.accessioned.fl_str_mv |
2010-05-07T04:15:27Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/21690 |
dc.identifier.issn.pt_BR.fl_str_mv |
1471-2091 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000689438 |
identifier_str_mv |
1471-2091 000689438 |
url |
http://hdl.handle.net/10183/21690 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
BMC biochemistry. London. v. 10, art. 3 (2 Feb. 2009) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/zip application/zip application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/21690/1/000689438.pdf http://www.lume.ufrgs.br/bitstream/10183/21690/2/000689438.zip http://www.lume.ufrgs.br/bitstream/10183/21690/3/000689438-02.zip http://www.lume.ufrgs.br/bitstream/10183/21690/4/000689438.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/21690/5/000689438.pdf.jpg |
bitstream.checksum.fl_str_mv |
7a5289a7aae6e11036f8919e18cd36dd c62825e2bcf58535890c5814a301fdae 69b6900f28fac48c9f260bdaac3c4742 2ac184011c83c13f3dbfda78827cfbd6 1342f72cb2f5e7f9b9a5251d91ed9d4b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447408851550208 |