Two-site Bose-Hubbard model with nonlinear tunneling : classical and quantum analysis

Detalhes bibliográficos
Autor(a) principal: Lima, Diefferson Rubeni da Rosa de
Data de Publicação: 2017
Outros Autores: Links, Jon, Isaac, Phillip S., Foerster, Angela
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/169617
Resumo: The extended Bose-Hubbard model for a double-well potential with atom-pair tunneling is studied. Starting with a classical analysis we determine the existence of three quantum phases: self-trapping, phase-locking, and Josephson states. From this analysis we build the parameter space of quantum phase transitions between degenerate and nondegenerate ground states driven by the atom-pair tunneling. Considering only the repulsive case, we confirm the phase transition by the measure of the energy gap between the ground state and the first excited state. We study the structure of the solutions of the Bethe ansatz equations for a small number of atoms. An inspection of the roots for the ground state suggests a relationship to the physical properties of the system. By studying the energy gap we find that the profile of the roots of the Bethe ansatz equations is related to a quantum phase transition.
id UFRGS-2_c80adfb131c5ce99973e22cb588ac670
oai_identifier_str oai:www.lume.ufrgs.br:10183/169617
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Lima, Diefferson Rubeni da Rosa deLinks, JonIsaac, Phillip S.Foerster, Angela2017-10-20T02:26:59Z20171050-2947http://hdl.handle.net/10183/169617001044431The extended Bose-Hubbard model for a double-well potential with atom-pair tunneling is studied. Starting with a classical analysis we determine the existence of three quantum phases: self-trapping, phase-locking, and Josephson states. From this analysis we build the parameter space of quantum phase transitions between degenerate and nondegenerate ground states driven by the atom-pair tunneling. Considering only the repulsive case, we confirm the phase transition by the measure of the energy gap between the ground state and the first excited state. We study the structure of the solutions of the Bethe ansatz equations for a small number of atoms. An inspection of the roots for the ground state suggests a relationship to the physical properties of the system. By studying the energy gap we find that the profile of the roots of the Bethe ansatz equations is related to a quantum phase transition.application/pdfengPhysical review. A, Atomic, molecular, and optical physics. New York. Vol. 95, no. 4 (Apr. 2017), 043607, 9 p.Transformações de faseTunelamentoEquacao de bethe ansatzModelo de hubbardTwo-site Bose-Hubbard model with nonlinear tunneling : classical and quantum analysisEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001044431.pdf001044431.pdfTexto completo (inglês)application/pdf1249685http://www.lume.ufrgs.br/bitstream/10183/169617/1/001044431.pdfb88a2b755b9ad0dd8f6d35e76046fad5MD51TEXT001044431.pdf.txt001044431.pdf.txtExtracted Texttext/plain32373http://www.lume.ufrgs.br/bitstream/10183/169617/2/001044431.pdf.txt2d749fdd06e29c17d7573eaa71f6cd89MD52THUMBNAIL001044431.pdf.jpg001044431.pdf.jpgGenerated Thumbnailimage/jpeg2135http://www.lume.ufrgs.br/bitstream/10183/169617/3/001044431.pdf.jpg50f25d86c3782aadc81cbb0374d7fabaMD5310183/1696172023-06-24 03:37:10.047335oai:www.lume.ufrgs.br:10183/169617Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-06-24T06:37:10Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Two-site Bose-Hubbard model with nonlinear tunneling : classical and quantum analysis
title Two-site Bose-Hubbard model with nonlinear tunneling : classical and quantum analysis
spellingShingle Two-site Bose-Hubbard model with nonlinear tunneling : classical and quantum analysis
Lima, Diefferson Rubeni da Rosa de
Transformações de fase
Tunelamento
Equacao de bethe ansatz
Modelo de hubbard
title_short Two-site Bose-Hubbard model with nonlinear tunneling : classical and quantum analysis
title_full Two-site Bose-Hubbard model with nonlinear tunneling : classical and quantum analysis
title_fullStr Two-site Bose-Hubbard model with nonlinear tunneling : classical and quantum analysis
title_full_unstemmed Two-site Bose-Hubbard model with nonlinear tunneling : classical and quantum analysis
title_sort Two-site Bose-Hubbard model with nonlinear tunneling : classical and quantum analysis
author Lima, Diefferson Rubeni da Rosa de
author_facet Lima, Diefferson Rubeni da Rosa de
Links, Jon
Isaac, Phillip S.
Foerster, Angela
author_role author
author2 Links, Jon
Isaac, Phillip S.
Foerster, Angela
author2_role author
author
author
dc.contributor.author.fl_str_mv Lima, Diefferson Rubeni da Rosa de
Links, Jon
Isaac, Phillip S.
Foerster, Angela
dc.subject.por.fl_str_mv Transformações de fase
Tunelamento
Equacao de bethe ansatz
Modelo de hubbard
topic Transformações de fase
Tunelamento
Equacao de bethe ansatz
Modelo de hubbard
description The extended Bose-Hubbard model for a double-well potential with atom-pair tunneling is studied. Starting with a classical analysis we determine the existence of three quantum phases: self-trapping, phase-locking, and Josephson states. From this analysis we build the parameter space of quantum phase transitions between degenerate and nondegenerate ground states driven by the atom-pair tunneling. Considering only the repulsive case, we confirm the phase transition by the measure of the energy gap between the ground state and the first excited state. We study the structure of the solutions of the Bethe ansatz equations for a small number of atoms. An inspection of the roots for the ground state suggests a relationship to the physical properties of the system. By studying the energy gap we find that the profile of the roots of the Bethe ansatz equations is related to a quantum phase transition.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-10-20T02:26:59Z
dc.date.issued.fl_str_mv 2017
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/169617
dc.identifier.issn.pt_BR.fl_str_mv 1050-2947
dc.identifier.nrb.pt_BR.fl_str_mv 001044431
identifier_str_mv 1050-2947
001044431
url http://hdl.handle.net/10183/169617
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. A, Atomic, molecular, and optical physics. New York. Vol. 95, no. 4 (Apr. 2017), 043607, 9 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/169617/1/001044431.pdf
http://www.lume.ufrgs.br/bitstream/10183/169617/2/001044431.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/169617/3/001044431.pdf.jpg
bitstream.checksum.fl_str_mv b88a2b755b9ad0dd8f6d35e76046fad5
2d749fdd06e29c17d7573eaa71f6cd89
50f25d86c3782aadc81cbb0374d7faba
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1798487358927011840