Geometrization in geometry

Detalhes bibliográficos
Autor(a) principal: Freitas, Izabella Muraro de
Data de Publicação: 2022
Outros Autores: Ramos, Álvaro Krüger
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/257116
Resumo: So far, the most magnificent breakthrough in mathematics in the 21st century is the Geometrization Theorem, a bold conjecture by William Thurston (generalizing Poincaré’s Conjecture) and proved by Grigory Perelman, based on the program suggested by Richard Hamilton. In this survey article, we will explain the statement of this result, also presenting some examples of how it can be used to obtain interesting results in differential geometry.
id UFRGS-2_cba3d780d9a018d6921756d5ff6a71ab
oai_identifier_str oai:www.lume.ufrgs.br:10183/257116
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Freitas, Izabella Muraro deRamos, Álvaro Krüger2023-04-19T03:23:47Z20220103-9059http://hdl.handle.net/10183/257116001159799So far, the most magnificent breakthrough in mathematics in the 21st century is the Geometrization Theorem, a bold conjecture by William Thurston (generalizing Poincaré’s Conjecture) and proved by Grigory Perelman, based on the program suggested by Richard Hamilton. In this survey article, we will explain the statement of this result, also presenting some examples of how it can be used to obtain interesting results in differential geometry.application/pdfengMatemática contemporânea. Rio de Janeiro. Vol. 50 (2022), p. 76 - 138GeometrizaçãoConjectura de PoincaréOrbifoldTopologia geométricaGeometrizationHyperbolizationPoincaré’s conjectureOrbifoldsSeifert fibered spacesGeometric topologyGeometrization in geometryEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001159799.pdf.txt001159799.pdf.txtExtracted Texttext/plain110669http://www.lume.ufrgs.br/bitstream/10183/257116/2/001159799.pdf.txtf6da79905406390caa98fa6e226f8cabMD52ORIGINAL001159799.pdfTexto completo (inglês)application/pdf2154866http://www.lume.ufrgs.br/bitstream/10183/257116/1/001159799.pdf66bc1d8dbc8aba16fdb01beee05edbcbMD5110183/2571162023-04-20 03:20:49.031872oai:www.lume.ufrgs.br:10183/257116Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-04-20T06:20:49Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Geometrization in geometry
title Geometrization in geometry
spellingShingle Geometrization in geometry
Freitas, Izabella Muraro de
Geometrização
Conjectura de Poincaré
Orbifold
Topologia geométrica
Geometrization
Hyperbolization
Poincaré’s conjecture
Orbifolds
Seifert fibered spaces
Geometric topology
title_short Geometrization in geometry
title_full Geometrization in geometry
title_fullStr Geometrization in geometry
title_full_unstemmed Geometrization in geometry
title_sort Geometrization in geometry
author Freitas, Izabella Muraro de
author_facet Freitas, Izabella Muraro de
Ramos, Álvaro Krüger
author_role author
author2 Ramos, Álvaro Krüger
author2_role author
dc.contributor.author.fl_str_mv Freitas, Izabella Muraro de
Ramos, Álvaro Krüger
dc.subject.por.fl_str_mv Geometrização
Conjectura de Poincaré
Orbifold
Topologia geométrica
topic Geometrização
Conjectura de Poincaré
Orbifold
Topologia geométrica
Geometrization
Hyperbolization
Poincaré’s conjecture
Orbifolds
Seifert fibered spaces
Geometric topology
dc.subject.eng.fl_str_mv Geometrization
Hyperbolization
Poincaré’s conjecture
Orbifolds
Seifert fibered spaces
Geometric topology
description So far, the most magnificent breakthrough in mathematics in the 21st century is the Geometrization Theorem, a bold conjecture by William Thurston (generalizing Poincaré’s Conjecture) and proved by Grigory Perelman, based on the program suggested by Richard Hamilton. In this survey article, we will explain the statement of this result, also presenting some examples of how it can be used to obtain interesting results in differential geometry.
publishDate 2022
dc.date.issued.fl_str_mv 2022
dc.date.accessioned.fl_str_mv 2023-04-19T03:23:47Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/257116
dc.identifier.issn.pt_BR.fl_str_mv 0103-9059
dc.identifier.nrb.pt_BR.fl_str_mv 001159799
identifier_str_mv 0103-9059
001159799
url http://hdl.handle.net/10183/257116
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Matemática contemporânea. Rio de Janeiro. Vol. 50 (2022), p. 76 - 138
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/257116/2/001159799.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/257116/1/001159799.pdf
bitstream.checksum.fl_str_mv f6da79905406390caa98fa6e226f8cab
66bc1d8dbc8aba16fdb01beee05edbcb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447825444503552