Geometrization in geometry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/257116 |
Resumo: | So far, the most magnificent breakthrough in mathematics in the 21st century is the Geometrization Theorem, a bold conjecture by William Thurston (generalizing Poincaré’s Conjecture) and proved by Grigory Perelman, based on the program suggested by Richard Hamilton. In this survey article, we will explain the statement of this result, also presenting some examples of how it can be used to obtain interesting results in differential geometry. |
id |
UFRGS-2_cba3d780d9a018d6921756d5ff6a71ab |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/257116 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Freitas, Izabella Muraro deRamos, Álvaro Krüger2023-04-19T03:23:47Z20220103-9059http://hdl.handle.net/10183/257116001159799So far, the most magnificent breakthrough in mathematics in the 21st century is the Geometrization Theorem, a bold conjecture by William Thurston (generalizing Poincaré’s Conjecture) and proved by Grigory Perelman, based on the program suggested by Richard Hamilton. In this survey article, we will explain the statement of this result, also presenting some examples of how it can be used to obtain interesting results in differential geometry.application/pdfengMatemática contemporânea. Rio de Janeiro. Vol. 50 (2022), p. 76 - 138GeometrizaçãoConjectura de PoincaréOrbifoldTopologia geométricaGeometrizationHyperbolizationPoincaré’s conjectureOrbifoldsSeifert fibered spacesGeometric topologyGeometrization in geometryEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001159799.pdf.txt001159799.pdf.txtExtracted Texttext/plain110669http://www.lume.ufrgs.br/bitstream/10183/257116/2/001159799.pdf.txtf6da79905406390caa98fa6e226f8cabMD52ORIGINAL001159799.pdfTexto completo (inglês)application/pdf2154866http://www.lume.ufrgs.br/bitstream/10183/257116/1/001159799.pdf66bc1d8dbc8aba16fdb01beee05edbcbMD5110183/2571162023-04-20 03:20:49.031872oai:www.lume.ufrgs.br:10183/257116Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-04-20T06:20:49Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Geometrization in geometry |
title |
Geometrization in geometry |
spellingShingle |
Geometrization in geometry Freitas, Izabella Muraro de Geometrização Conjectura de Poincaré Orbifold Topologia geométrica Geometrization Hyperbolization Poincaré’s conjecture Orbifolds Seifert fibered spaces Geometric topology |
title_short |
Geometrization in geometry |
title_full |
Geometrization in geometry |
title_fullStr |
Geometrization in geometry |
title_full_unstemmed |
Geometrization in geometry |
title_sort |
Geometrization in geometry |
author |
Freitas, Izabella Muraro de |
author_facet |
Freitas, Izabella Muraro de Ramos, Álvaro Krüger |
author_role |
author |
author2 |
Ramos, Álvaro Krüger |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Freitas, Izabella Muraro de Ramos, Álvaro Krüger |
dc.subject.por.fl_str_mv |
Geometrização Conjectura de Poincaré Orbifold Topologia geométrica |
topic |
Geometrização Conjectura de Poincaré Orbifold Topologia geométrica Geometrization Hyperbolization Poincaré’s conjecture Orbifolds Seifert fibered spaces Geometric topology |
dc.subject.eng.fl_str_mv |
Geometrization Hyperbolization Poincaré’s conjecture Orbifolds Seifert fibered spaces Geometric topology |
description |
So far, the most magnificent breakthrough in mathematics in the 21st century is the Geometrization Theorem, a bold conjecture by William Thurston (generalizing Poincaré’s Conjecture) and proved by Grigory Perelman, based on the program suggested by Richard Hamilton. In this survey article, we will explain the statement of this result, also presenting some examples of how it can be used to obtain interesting results in differential geometry. |
publishDate |
2022 |
dc.date.issued.fl_str_mv |
2022 |
dc.date.accessioned.fl_str_mv |
2023-04-19T03:23:47Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/257116 |
dc.identifier.issn.pt_BR.fl_str_mv |
0103-9059 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001159799 |
identifier_str_mv |
0103-9059 001159799 |
url |
http://hdl.handle.net/10183/257116 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Matemática contemporânea. Rio de Janeiro. Vol. 50 (2022), p. 76 - 138 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/257116/2/001159799.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/257116/1/001159799.pdf |
bitstream.checksum.fl_str_mv |
f6da79905406390caa98fa6e226f8cab 66bc1d8dbc8aba16fdb01beee05edbcb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447825444503552 |