Parameter estimation in Manneville–Pomeau processes

Detalhes bibliográficos
Autor(a) principal: Pasini, Bárbara Patricia Olbermann
Data de Publicação: 2023
Outros Autores: Lopes, Silvia Regina Costa, Lopes, Artur Oscar
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/263140
Resumo: In this paper, we study a class of stochastic processes [...], where[...] is obtained from the iterations of the transformation , invariant for an ergodic probability[...] on [...] and a certain constant by partial function [...]. We consider here the family of transformations[...] indexed by a parameter , known as the Manneville–Pomeau family of transformations. The autocorrelation function of the resulting process decays hyperbolically (or polynomially) and we obtain efficient methods to estimate the parameter[...] from a finite time series. As a consequence, we also estimate the rate of convergence of the autocorrelation decay of these processes. We compare different estimation methods based on the periodogram function, the smoothed periodogram function, the variance of the partial sum, and the wavelet theory. To obtain our results we analyzed the properties of the spectral density function and the associated Fourier series.
id UFRGS-2_cd4b4165699da1873a54545e129daf23
oai_identifier_str oai:www.lume.ufrgs.br:10183/263140
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Pasini, Bárbara Patricia OlbermannLopes, Silvia Regina CostaLopes, Artur Oscar2023-08-03T03:34:25Z20232095-9672http://hdl.handle.net/10183/263140001172731In this paper, we study a class of stochastic processes [...], where[...] is obtained from the iterations of the transformation , invariant for an ergodic probability[...] on [...] and a certain constant by partial function [...]. We consider here the family of transformations[...] indexed by a parameter , known as the Manneville–Pomeau family of transformations. The autocorrelation function of the resulting process decays hyperbolically (or polynomially) and we obtain efficient methods to estimate the parameter[...] from a finite time series. As a consequence, we also estimate the rate of convergence of the autocorrelation decay of these processes. We compare different estimation methods based on the periodogram function, the smoothed periodogram function, the variance of the partial sum, and the wavelet theory. To obtain our results we analyzed the properties of the spectral density function and the associated Fourier series.application/pdfengProbability, Uncertainty and Quantitative Risk. China. Vol. 8, no. 2 (2023), p. 213-234Processos estocásticosProbabilidade aplicada : Metodos matematicosMapa Manneville–PomeauLong and not so long dependenceEstimationAutocorrelation decaySpectral density functionParameter estimation in Manneville–Pomeau processesEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001172731.pdf.txt001172731.pdf.txtExtracted Texttext/plain73486http://www.lume.ufrgs.br/bitstream/10183/263140/2/001172731.pdf.txt5ad10778a6ea7bb7f6140500d69f1dc4MD52ORIGINAL001172731.pdfTexto completo (inglês)application/pdf952293http://www.lume.ufrgs.br/bitstream/10183/263140/1/001172731.pdf644aa9076310bbbd8f21f85fba61451fMD5110183/2631402023-08-04 03:33:53.097686oai:www.lume.ufrgs.br:10183/263140Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-08-04T06:33:53Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Parameter estimation in Manneville–Pomeau processes
title Parameter estimation in Manneville–Pomeau processes
spellingShingle Parameter estimation in Manneville–Pomeau processes
Pasini, Bárbara Patricia Olbermann
Processos estocásticos
Probabilidade aplicada : Metodos matematicos
Mapa Manneville–Pomeau
Long and not so long dependence
Estimation
Autocorrelation decay
Spectral density function
title_short Parameter estimation in Manneville–Pomeau processes
title_full Parameter estimation in Manneville–Pomeau processes
title_fullStr Parameter estimation in Manneville–Pomeau processes
title_full_unstemmed Parameter estimation in Manneville–Pomeau processes
title_sort Parameter estimation in Manneville–Pomeau processes
author Pasini, Bárbara Patricia Olbermann
author_facet Pasini, Bárbara Patricia Olbermann
Lopes, Silvia Regina Costa
Lopes, Artur Oscar
author_role author
author2 Lopes, Silvia Regina Costa
Lopes, Artur Oscar
author2_role author
author
dc.contributor.author.fl_str_mv Pasini, Bárbara Patricia Olbermann
Lopes, Silvia Regina Costa
Lopes, Artur Oscar
dc.subject.por.fl_str_mv Processos estocásticos
Probabilidade aplicada : Metodos matematicos
topic Processos estocásticos
Probabilidade aplicada : Metodos matematicos
Mapa Manneville–Pomeau
Long and not so long dependence
Estimation
Autocorrelation decay
Spectral density function
dc.subject.eng.fl_str_mv Mapa Manneville–Pomeau
Long and not so long dependence
Estimation
Autocorrelation decay
Spectral density function
description In this paper, we study a class of stochastic processes [...], where[...] is obtained from the iterations of the transformation , invariant for an ergodic probability[...] on [...] and a certain constant by partial function [...]. We consider here the family of transformations[...] indexed by a parameter , known as the Manneville–Pomeau family of transformations. The autocorrelation function of the resulting process decays hyperbolically (or polynomially) and we obtain efficient methods to estimate the parameter[...] from a finite time series. As a consequence, we also estimate the rate of convergence of the autocorrelation decay of these processes. We compare different estimation methods based on the periodogram function, the smoothed periodogram function, the variance of the partial sum, and the wavelet theory. To obtain our results we analyzed the properties of the spectral density function and the associated Fourier series.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-08-03T03:34:25Z
dc.date.issued.fl_str_mv 2023
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/263140
dc.identifier.issn.pt_BR.fl_str_mv 2095-9672
dc.identifier.nrb.pt_BR.fl_str_mv 001172731
identifier_str_mv 2095-9672
001172731
url http://hdl.handle.net/10183/263140
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Probability, Uncertainty and Quantitative Risk. China. Vol. 8, no. 2 (2023), p. 213-234
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/263140/2/001172731.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/263140/1/001172731.pdf
bitstream.checksum.fl_str_mv 5ad10778a6ea7bb7f6140500d69f1dc4
644aa9076310bbbd8f21f85fba61451f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447834942504960