Parameter estimation in Manneville–Pomeau processes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/263140 |
Resumo: | In this paper, we study a class of stochastic processes [...], where[...] is obtained from the iterations of the transformation , invariant for an ergodic probability[...] on [...] and a certain constant by partial function [...]. We consider here the family of transformations[...] indexed by a parameter , known as the Manneville–Pomeau family of transformations. The autocorrelation function of the resulting process decays hyperbolically (or polynomially) and we obtain efficient methods to estimate the parameter[...] from a finite time series. As a consequence, we also estimate the rate of convergence of the autocorrelation decay of these processes. We compare different estimation methods based on the periodogram function, the smoothed periodogram function, the variance of the partial sum, and the wavelet theory. To obtain our results we analyzed the properties of the spectral density function and the associated Fourier series. |
id |
UFRGS-2_cd4b4165699da1873a54545e129daf23 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/263140 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Pasini, Bárbara Patricia OlbermannLopes, Silvia Regina CostaLopes, Artur Oscar2023-08-03T03:34:25Z20232095-9672http://hdl.handle.net/10183/263140001172731In this paper, we study a class of stochastic processes [...], where[...] is obtained from the iterations of the transformation , invariant for an ergodic probability[...] on [...] and a certain constant by partial function [...]. We consider here the family of transformations[...] indexed by a parameter , known as the Manneville–Pomeau family of transformations. The autocorrelation function of the resulting process decays hyperbolically (or polynomially) and we obtain efficient methods to estimate the parameter[...] from a finite time series. As a consequence, we also estimate the rate of convergence of the autocorrelation decay of these processes. We compare different estimation methods based on the periodogram function, the smoothed periodogram function, the variance of the partial sum, and the wavelet theory. To obtain our results we analyzed the properties of the spectral density function and the associated Fourier series.application/pdfengProbability, Uncertainty and Quantitative Risk. China. Vol. 8, no. 2 (2023), p. 213-234Processos estocásticosProbabilidade aplicada : Metodos matematicosMapa Manneville–PomeauLong and not so long dependenceEstimationAutocorrelation decaySpectral density functionParameter estimation in Manneville–Pomeau processesEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001172731.pdf.txt001172731.pdf.txtExtracted Texttext/plain73486http://www.lume.ufrgs.br/bitstream/10183/263140/2/001172731.pdf.txt5ad10778a6ea7bb7f6140500d69f1dc4MD52ORIGINAL001172731.pdfTexto completo (inglês)application/pdf952293http://www.lume.ufrgs.br/bitstream/10183/263140/1/001172731.pdf644aa9076310bbbd8f21f85fba61451fMD5110183/2631402023-08-04 03:33:53.097686oai:www.lume.ufrgs.br:10183/263140Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-08-04T06:33:53Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Parameter estimation in Manneville–Pomeau processes |
title |
Parameter estimation in Manneville–Pomeau processes |
spellingShingle |
Parameter estimation in Manneville–Pomeau processes Pasini, Bárbara Patricia Olbermann Processos estocásticos Probabilidade aplicada : Metodos matematicos Mapa Manneville–Pomeau Long and not so long dependence Estimation Autocorrelation decay Spectral density function |
title_short |
Parameter estimation in Manneville–Pomeau processes |
title_full |
Parameter estimation in Manneville–Pomeau processes |
title_fullStr |
Parameter estimation in Manneville–Pomeau processes |
title_full_unstemmed |
Parameter estimation in Manneville–Pomeau processes |
title_sort |
Parameter estimation in Manneville–Pomeau processes |
author |
Pasini, Bárbara Patricia Olbermann |
author_facet |
Pasini, Bárbara Patricia Olbermann Lopes, Silvia Regina Costa Lopes, Artur Oscar |
author_role |
author |
author2 |
Lopes, Silvia Regina Costa Lopes, Artur Oscar |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Pasini, Bárbara Patricia Olbermann Lopes, Silvia Regina Costa Lopes, Artur Oscar |
dc.subject.por.fl_str_mv |
Processos estocásticos Probabilidade aplicada : Metodos matematicos |
topic |
Processos estocásticos Probabilidade aplicada : Metodos matematicos Mapa Manneville–Pomeau Long and not so long dependence Estimation Autocorrelation decay Spectral density function |
dc.subject.eng.fl_str_mv |
Mapa Manneville–Pomeau Long and not so long dependence Estimation Autocorrelation decay Spectral density function |
description |
In this paper, we study a class of stochastic processes [...], where[...] is obtained from the iterations of the transformation , invariant for an ergodic probability[...] on [...] and a certain constant by partial function [...]. We consider here the family of transformations[...] indexed by a parameter , known as the Manneville–Pomeau family of transformations. The autocorrelation function of the resulting process decays hyperbolically (or polynomially) and we obtain efficient methods to estimate the parameter[...] from a finite time series. As a consequence, we also estimate the rate of convergence of the autocorrelation decay of these processes. We compare different estimation methods based on the periodogram function, the smoothed periodogram function, the variance of the partial sum, and the wavelet theory. To obtain our results we analyzed the properties of the spectral density function and the associated Fourier series. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-08-03T03:34:25Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/263140 |
dc.identifier.issn.pt_BR.fl_str_mv |
2095-9672 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001172731 |
identifier_str_mv |
2095-9672 001172731 |
url |
http://hdl.handle.net/10183/263140 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Probability, Uncertainty and Quantitative Risk. China. Vol. 8, no. 2 (2023), p. 213-234 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/263140/2/001172731.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/263140/1/001172731.pdf |
bitstream.checksum.fl_str_mv |
5ad10778a6ea7bb7f6140500d69f1dc4 644aa9076310bbbd8f21f85fba61451f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447834942504960 |