State estimation of chemical engineering systems tending to multiple solutions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/117411 |
Resumo: | A well-evaluated state covariance matrix avoids error propagation due to divergence issues and, thereby, it is crucial for a successful state estimator design. In this paper we investigate the performance of the state covariance matrices used in three unconstrained Extended Kalman Filter (EKF) formulations and one constrained EKF formulation (CEKF). As benchmark case studies we have chosen: a) a batch chemical reactor with reversible reactions whose system model and measurement are such that multiple states satisfy the equilibrium condition and b) a CSTR with exothermic irreversible reactions and cooling jacket energy balance whose nonlinear behavior includes multiple steady-states and limit cycles. The results have shown that CEKF is in general the best choice of EKF formulations (even if they are constrained with an ad hoc clipping strategy which avoids undesired states) for such case studies. Contrary to a clipped EKF formulation, CEKF incorporates constraints into an optimization problem, which minimizes the noise in a least square sense preventing a bad noise distribution. It is also shown that, although the Moving Horizon Estimation (MHE) provides greater robustness to a poor guess of the initial state, converging in less steps to the actual states, it is not justified for our examples due to the high additional computational effort. |
id |
UFRGS-2_d4744546557d1c6d07071548ce2d0237 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/117411 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Salau, Nina Paula GonçalvesTrierweiler, Jorge OtávioSecchi, Argimiro Resende2015-06-02T02:00:11Z20140104-6632http://hdl.handle.net/10183/117411000965437A well-evaluated state covariance matrix avoids error propagation due to divergence issues and, thereby, it is crucial for a successful state estimator design. In this paper we investigate the performance of the state covariance matrices used in three unconstrained Extended Kalman Filter (EKF) formulations and one constrained EKF formulation (CEKF). As benchmark case studies we have chosen: a) a batch chemical reactor with reversible reactions whose system model and measurement are such that multiple states satisfy the equilibrium condition and b) a CSTR with exothermic irreversible reactions and cooling jacket energy balance whose nonlinear behavior includes multiple steady-states and limit cycles. The results have shown that CEKF is in general the best choice of EKF formulations (even if they are constrained with an ad hoc clipping strategy which avoids undesired states) for such case studies. Contrary to a clipped EKF formulation, CEKF incorporates constraints into an optimization problem, which minimizes the noise in a least square sense preventing a bad noise distribution. It is also shown that, although the Moving Horizon Estimation (MHE) provides greater robustness to a poor guess of the initial state, converging in less steps to the actual states, it is not justified for our examples due to the high additional computational effort.application/pdfengBrazilian journal of chemical engineering. São Paulo. Vol. 31, no. 3 (Jul./Sept. 2014), p. 771-785Controle de processosMétodos numéricosNonlinear state estimationState covariance matrixNoise distributionMultiple solutionsState estimation of chemical engineering systems tending to multiple solutionsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000965437.pdf.txt000965437.pdf.txtExtracted Texttext/plain51951http://www.lume.ufrgs.br/bitstream/10183/117411/2/000965437.pdf.txt8cea1e6df36f80e26e8c69100958d96bMD52ORIGINAL000965437.pdf000965437.pdfTexto completo (inglês)application/pdf394873http://www.lume.ufrgs.br/bitstream/10183/117411/1/000965437.pdf03ffbf5ec3aa88d895d950d5cc87049fMD51THUMBNAIL000965437.pdf.jpg000965437.pdf.jpgGenerated Thumbnailimage/jpeg1910http://www.lume.ufrgs.br/bitstream/10183/117411/3/000965437.pdf.jpg50d0d81e386db4f73c68a8d5f71907d0MD5310183/1174112022-08-21 04:40:17.655698oai:www.lume.ufrgs.br:10183/117411Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2022-08-21T07:40:17Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
State estimation of chemical engineering systems tending to multiple solutions |
title |
State estimation of chemical engineering systems tending to multiple solutions |
spellingShingle |
State estimation of chemical engineering systems tending to multiple solutions Salau, Nina Paula Gonçalves Controle de processos Métodos numéricos Nonlinear state estimation State covariance matrix Noise distribution Multiple solutions |
title_short |
State estimation of chemical engineering systems tending to multiple solutions |
title_full |
State estimation of chemical engineering systems tending to multiple solutions |
title_fullStr |
State estimation of chemical engineering systems tending to multiple solutions |
title_full_unstemmed |
State estimation of chemical engineering systems tending to multiple solutions |
title_sort |
State estimation of chemical engineering systems tending to multiple solutions |
author |
Salau, Nina Paula Gonçalves |
author_facet |
Salau, Nina Paula Gonçalves Trierweiler, Jorge Otávio Secchi, Argimiro Resende |
author_role |
author |
author2 |
Trierweiler, Jorge Otávio Secchi, Argimiro Resende |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Salau, Nina Paula Gonçalves Trierweiler, Jorge Otávio Secchi, Argimiro Resende |
dc.subject.por.fl_str_mv |
Controle de processos Métodos numéricos |
topic |
Controle de processos Métodos numéricos Nonlinear state estimation State covariance matrix Noise distribution Multiple solutions |
dc.subject.eng.fl_str_mv |
Nonlinear state estimation State covariance matrix Noise distribution Multiple solutions |
description |
A well-evaluated state covariance matrix avoids error propagation due to divergence issues and, thereby, it is crucial for a successful state estimator design. In this paper we investigate the performance of the state covariance matrices used in three unconstrained Extended Kalman Filter (EKF) formulations and one constrained EKF formulation (CEKF). As benchmark case studies we have chosen: a) a batch chemical reactor with reversible reactions whose system model and measurement are such that multiple states satisfy the equilibrium condition and b) a CSTR with exothermic irreversible reactions and cooling jacket energy balance whose nonlinear behavior includes multiple steady-states and limit cycles. The results have shown that CEKF is in general the best choice of EKF formulations (even if they are constrained with an ad hoc clipping strategy which avoids undesired states) for such case studies. Contrary to a clipped EKF formulation, CEKF incorporates constraints into an optimization problem, which minimizes the noise in a least square sense preventing a bad noise distribution. It is also shown that, although the Moving Horizon Estimation (MHE) provides greater robustness to a poor guess of the initial state, converging in less steps to the actual states, it is not justified for our examples due to the high additional computational effort. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014 |
dc.date.accessioned.fl_str_mv |
2015-06-02T02:00:11Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/117411 |
dc.identifier.issn.pt_BR.fl_str_mv |
0104-6632 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000965437 |
identifier_str_mv |
0104-6632 000965437 |
url |
http://hdl.handle.net/10183/117411 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Brazilian journal of chemical engineering. São Paulo. Vol. 31, no. 3 (Jul./Sept. 2014), p. 771-785 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/117411/2/000965437.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/117411/1/000965437.pdf http://www.lume.ufrgs.br/bitstream/10183/117411/3/000965437.pdf.jpg |
bitstream.checksum.fl_str_mv |
8cea1e6df36f80e26e8c69100958d96b 03ffbf5ec3aa88d895d950d5cc87049f 50d0d81e386db4f73c68a8d5f71907d0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447584433504256 |