State estimation of chemical engineering systems tending to multiple solutions

Detalhes bibliográficos
Autor(a) principal: Salau, Nina Paula Gonçalves
Data de Publicação: 2014
Outros Autores: Trierweiler, Jorge Otávio, Secchi, Argimiro Resende
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/117411
Resumo: A well-evaluated state covariance matrix avoids error propagation due to divergence issues and, thereby, it is crucial for a successful state estimator design. In this paper we investigate the performance of the state covariance matrices used in three unconstrained Extended Kalman Filter (EKF) formulations and one constrained EKF formulation (CEKF). As benchmark case studies we have chosen: a) a batch chemical reactor with reversible reactions whose system model and measurement are such that multiple states satisfy the equilibrium condition and b) a CSTR with exothermic irreversible reactions and cooling jacket energy balance whose nonlinear behavior includes multiple steady-states and limit cycles. The results have shown that CEKF is in general the best choice of EKF formulations (even if they are constrained with an ad hoc clipping strategy which avoids undesired states) for such case studies. Contrary to a clipped EKF formulation, CEKF incorporates constraints into an optimization problem, which minimizes the noise in a least square sense preventing a bad noise distribution. It is also shown that, although the Moving Horizon Estimation (MHE) provides greater robustness to a poor guess of the initial state, converging in less steps to the actual states, it is not justified for our examples due to the high additional computational effort.
id UFRGS-2_d4744546557d1c6d07071548ce2d0237
oai_identifier_str oai:www.lume.ufrgs.br:10183/117411
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Salau, Nina Paula GonçalvesTrierweiler, Jorge OtávioSecchi, Argimiro Resende2015-06-02T02:00:11Z20140104-6632http://hdl.handle.net/10183/117411000965437A well-evaluated state covariance matrix avoids error propagation due to divergence issues and, thereby, it is crucial for a successful state estimator design. In this paper we investigate the performance of the state covariance matrices used in three unconstrained Extended Kalman Filter (EKF) formulations and one constrained EKF formulation (CEKF). As benchmark case studies we have chosen: a) a batch chemical reactor with reversible reactions whose system model and measurement are such that multiple states satisfy the equilibrium condition and b) a CSTR with exothermic irreversible reactions and cooling jacket energy balance whose nonlinear behavior includes multiple steady-states and limit cycles. The results have shown that CEKF is in general the best choice of EKF formulations (even if they are constrained with an ad hoc clipping strategy which avoids undesired states) for such case studies. Contrary to a clipped EKF formulation, CEKF incorporates constraints into an optimization problem, which minimizes the noise in a least square sense preventing a bad noise distribution. It is also shown that, although the Moving Horizon Estimation (MHE) provides greater robustness to a poor guess of the initial state, converging in less steps to the actual states, it is not justified for our examples due to the high additional computational effort.application/pdfengBrazilian journal of chemical engineering. São Paulo. Vol. 31, no. 3 (Jul./Sept. 2014), p. 771-785Controle de processosMétodos numéricosNonlinear state estimationState covariance matrixNoise distributionMultiple solutionsState estimation of chemical engineering systems tending to multiple solutionsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000965437.pdf.txt000965437.pdf.txtExtracted Texttext/plain51951http://www.lume.ufrgs.br/bitstream/10183/117411/2/000965437.pdf.txt8cea1e6df36f80e26e8c69100958d96bMD52ORIGINAL000965437.pdf000965437.pdfTexto completo (inglês)application/pdf394873http://www.lume.ufrgs.br/bitstream/10183/117411/1/000965437.pdf03ffbf5ec3aa88d895d950d5cc87049fMD51THUMBNAIL000965437.pdf.jpg000965437.pdf.jpgGenerated Thumbnailimage/jpeg1910http://www.lume.ufrgs.br/bitstream/10183/117411/3/000965437.pdf.jpg50d0d81e386db4f73c68a8d5f71907d0MD5310183/1174112022-08-21 04:40:17.655698oai:www.lume.ufrgs.br:10183/117411Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2022-08-21T07:40:17Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv State estimation of chemical engineering systems tending to multiple solutions
title State estimation of chemical engineering systems tending to multiple solutions
spellingShingle State estimation of chemical engineering systems tending to multiple solutions
Salau, Nina Paula Gonçalves
Controle de processos
Métodos numéricos
Nonlinear state estimation
State covariance matrix
Noise distribution
Multiple solutions
title_short State estimation of chemical engineering systems tending to multiple solutions
title_full State estimation of chemical engineering systems tending to multiple solutions
title_fullStr State estimation of chemical engineering systems tending to multiple solutions
title_full_unstemmed State estimation of chemical engineering systems tending to multiple solutions
title_sort State estimation of chemical engineering systems tending to multiple solutions
author Salau, Nina Paula Gonçalves
author_facet Salau, Nina Paula Gonçalves
Trierweiler, Jorge Otávio
Secchi, Argimiro Resende
author_role author
author2 Trierweiler, Jorge Otávio
Secchi, Argimiro Resende
author2_role author
author
dc.contributor.author.fl_str_mv Salau, Nina Paula Gonçalves
Trierweiler, Jorge Otávio
Secchi, Argimiro Resende
dc.subject.por.fl_str_mv Controle de processos
Métodos numéricos
topic Controle de processos
Métodos numéricos
Nonlinear state estimation
State covariance matrix
Noise distribution
Multiple solutions
dc.subject.eng.fl_str_mv Nonlinear state estimation
State covariance matrix
Noise distribution
Multiple solutions
description A well-evaluated state covariance matrix avoids error propagation due to divergence issues and, thereby, it is crucial for a successful state estimator design. In this paper we investigate the performance of the state covariance matrices used in three unconstrained Extended Kalman Filter (EKF) formulations and one constrained EKF formulation (CEKF). As benchmark case studies we have chosen: a) a batch chemical reactor with reversible reactions whose system model and measurement are such that multiple states satisfy the equilibrium condition and b) a CSTR with exothermic irreversible reactions and cooling jacket energy balance whose nonlinear behavior includes multiple steady-states and limit cycles. The results have shown that CEKF is in general the best choice of EKF formulations (even if they are constrained with an ad hoc clipping strategy which avoids undesired states) for such case studies. Contrary to a clipped EKF formulation, CEKF incorporates constraints into an optimization problem, which minimizes the noise in a least square sense preventing a bad noise distribution. It is also shown that, although the Moving Horizon Estimation (MHE) provides greater robustness to a poor guess of the initial state, converging in less steps to the actual states, it is not justified for our examples due to the high additional computational effort.
publishDate 2014
dc.date.issued.fl_str_mv 2014
dc.date.accessioned.fl_str_mv 2015-06-02T02:00:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/117411
dc.identifier.issn.pt_BR.fl_str_mv 0104-6632
dc.identifier.nrb.pt_BR.fl_str_mv 000965437
identifier_str_mv 0104-6632
000965437
url http://hdl.handle.net/10183/117411
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Brazilian journal of chemical engineering. São Paulo. Vol. 31, no. 3 (Jul./Sept. 2014), p. 771-785
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/117411/2/000965437.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/117411/1/000965437.pdf
http://www.lume.ufrgs.br/bitstream/10183/117411/3/000965437.pdf.jpg
bitstream.checksum.fl_str_mv 8cea1e6df36f80e26e8c69100958d96b
03ffbf5ec3aa88d895d950d5cc87049f
50d0d81e386db4f73c68a8d5f71907d0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447584433504256