Electrostatic weak turbulence theory for warm magnetized plasmas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/272225 |
Resumo: | Electrostatic weak turbulence theory for plasmas immersed in an ambient magnetic field is developed by employing a hybrid two-fluid and kinetic theories. The nonlinear susceptibility response function is calculated with the use of warm two-fluid equations. The linear dispersion relations for longitudinal electrostatic waves in magnetized plasmas are also obtained within the warm two-fluid theoretical scheme. However, dissipations that arise from linear and nonlinear wave–particle interactions cannot be discussed with the macroscopic two-fluid theory. To compute such collisionless dissipation effects, linearized kinetic theory is utilized. Moreover, a particle kinetic equation, which is necessary for a self-consistent description of the problem, is derived from the quasilinear kinetic theory. The final set of equations directly generalizes the electrostatic weak turbulence theory in unmagnetized plasmas, which could be applied for a variety of problems including the electron beam–plasma interactions in magnetized plasma environments. |
id |
UFRGS-2_d9ba5b3c7de99c917e3b818a61b39613 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/272225 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Yoon, Peter H.Ziebell, Luiz Fernando2024-02-27T04:58:08Z20211070-664Xhttp://hdl.handle.net/10183/272225001143059Electrostatic weak turbulence theory for plasmas immersed in an ambient magnetic field is developed by employing a hybrid two-fluid and kinetic theories. The nonlinear susceptibility response function is calculated with the use of warm two-fluid equations. The linear dispersion relations for longitudinal electrostatic waves in magnetized plasmas are also obtained within the warm two-fluid theoretical scheme. However, dissipations that arise from linear and nonlinear wave–particle interactions cannot be discussed with the macroscopic two-fluid theory. To compute such collisionless dissipation effects, linearized kinetic theory is utilized. Moreover, a particle kinetic equation, which is necessary for a self-consistent description of the problem, is derived from the quasilinear kinetic theory. The final set of equations directly generalizes the electrostatic weak turbulence theory in unmagnetized plasmas, which could be applied for a variety of problems including the electron beam–plasma interactions in magnetized plasma environments.application/pdfengPhysics of plasmas. Melville. Vol. 28, no. 12 (Dec. 2021), 122302, 14 p.PlasmasOndas eletrostáticasTeoria da turbulenciaElectrostatic weak turbulence theory for warm magnetized plasmasEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001143059.pdf.txt001143059.pdf.txtExtracted Texttext/plain63836http://www.lume.ufrgs.br/bitstream/10183/272225/2/001143059.pdf.txtd0f89880a3a46c3eddbcb6a487c0ec49MD52ORIGINAL001143059.pdfTexto completo (inglês)application/pdf1302003http://www.lume.ufrgs.br/bitstream/10183/272225/1/001143059.pdf80ee59595b828867276504f6479ea29aMD5110183/2722252024-02-28 05:03:20.782571oai:www.lume.ufrgs.br:10183/272225Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-02-28T08:03:20Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Electrostatic weak turbulence theory for warm magnetized plasmas |
title |
Electrostatic weak turbulence theory for warm magnetized plasmas |
spellingShingle |
Electrostatic weak turbulence theory for warm magnetized plasmas Yoon, Peter H. Plasmas Ondas eletrostáticas Teoria da turbulencia |
title_short |
Electrostatic weak turbulence theory for warm magnetized plasmas |
title_full |
Electrostatic weak turbulence theory for warm magnetized plasmas |
title_fullStr |
Electrostatic weak turbulence theory for warm magnetized plasmas |
title_full_unstemmed |
Electrostatic weak turbulence theory for warm magnetized plasmas |
title_sort |
Electrostatic weak turbulence theory for warm magnetized plasmas |
author |
Yoon, Peter H. |
author_facet |
Yoon, Peter H. Ziebell, Luiz Fernando |
author_role |
author |
author2 |
Ziebell, Luiz Fernando |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Yoon, Peter H. Ziebell, Luiz Fernando |
dc.subject.por.fl_str_mv |
Plasmas Ondas eletrostáticas Teoria da turbulencia |
topic |
Plasmas Ondas eletrostáticas Teoria da turbulencia |
description |
Electrostatic weak turbulence theory for plasmas immersed in an ambient magnetic field is developed by employing a hybrid two-fluid and kinetic theories. The nonlinear susceptibility response function is calculated with the use of warm two-fluid equations. The linear dispersion relations for longitudinal electrostatic waves in magnetized plasmas are also obtained within the warm two-fluid theoretical scheme. However, dissipations that arise from linear and nonlinear wave–particle interactions cannot be discussed with the macroscopic two-fluid theory. To compute such collisionless dissipation effects, linearized kinetic theory is utilized. Moreover, a particle kinetic equation, which is necessary for a self-consistent description of the problem, is derived from the quasilinear kinetic theory. The final set of equations directly generalizes the electrostatic weak turbulence theory in unmagnetized plasmas, which could be applied for a variety of problems including the electron beam–plasma interactions in magnetized plasma environments. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021 |
dc.date.accessioned.fl_str_mv |
2024-02-27T04:58:08Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/272225 |
dc.identifier.issn.pt_BR.fl_str_mv |
1070-664X |
dc.identifier.nrb.pt_BR.fl_str_mv |
001143059 |
identifier_str_mv |
1070-664X 001143059 |
url |
http://hdl.handle.net/10183/272225 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Physics of plasmas. Melville. Vol. 28, no. 12 (Dec. 2021), 122302, 14 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/272225/2/001143059.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/272225/1/001143059.pdf |
bitstream.checksum.fl_str_mv |
d0f89880a3a46c3eddbcb6a487c0ec49 80ee59595b828867276504f6479ea29a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447853479231488 |