Electrostatic weak turbulence theory for warm magnetized plasmas

Detalhes bibliográficos
Autor(a) principal: Yoon, Peter H.
Data de Publicação: 2021
Outros Autores: Ziebell, Luiz Fernando
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/272225
Resumo: Electrostatic weak turbulence theory for plasmas immersed in an ambient magnetic field is developed by employing a hybrid two-fluid and kinetic theories. The nonlinear susceptibility response function is calculated with the use of warm two-fluid equations. The linear dispersion relations for longitudinal electrostatic waves in magnetized plasmas are also obtained within the warm two-fluid theoretical scheme. However, dissipations that arise from linear and nonlinear wave–particle interactions cannot be discussed with the macroscopic two-fluid theory. To compute such collisionless dissipation effects, linearized kinetic theory is utilized. Moreover, a particle kinetic equation, which is necessary for a self-consistent description of the problem, is derived from the quasilinear kinetic theory. The final set of equations directly generalizes the electrostatic weak turbulence theory in unmagnetized plasmas, which could be applied for a variety of problems including the electron beam–plasma interactions in magnetized plasma environments.
id UFRGS-2_d9ba5b3c7de99c917e3b818a61b39613
oai_identifier_str oai:www.lume.ufrgs.br:10183/272225
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Yoon, Peter H.Ziebell, Luiz Fernando2024-02-27T04:58:08Z20211070-664Xhttp://hdl.handle.net/10183/272225001143059Electrostatic weak turbulence theory for plasmas immersed in an ambient magnetic field is developed by employing a hybrid two-fluid and kinetic theories. The nonlinear susceptibility response function is calculated with the use of warm two-fluid equations. The linear dispersion relations for longitudinal electrostatic waves in magnetized plasmas are also obtained within the warm two-fluid theoretical scheme. However, dissipations that arise from linear and nonlinear wave–particle interactions cannot be discussed with the macroscopic two-fluid theory. To compute such collisionless dissipation effects, linearized kinetic theory is utilized. Moreover, a particle kinetic equation, which is necessary for a self-consistent description of the problem, is derived from the quasilinear kinetic theory. The final set of equations directly generalizes the electrostatic weak turbulence theory in unmagnetized plasmas, which could be applied for a variety of problems including the electron beam–plasma interactions in magnetized plasma environments.application/pdfengPhysics of plasmas. Melville. Vol. 28, no. 12 (Dec. 2021), 122302, 14 p.PlasmasOndas eletrostáticasTeoria da turbulenciaElectrostatic weak turbulence theory for warm magnetized plasmasEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001143059.pdf.txt001143059.pdf.txtExtracted Texttext/plain63836http://www.lume.ufrgs.br/bitstream/10183/272225/2/001143059.pdf.txtd0f89880a3a46c3eddbcb6a487c0ec49MD52ORIGINAL001143059.pdfTexto completo (inglês)application/pdf1302003http://www.lume.ufrgs.br/bitstream/10183/272225/1/001143059.pdf80ee59595b828867276504f6479ea29aMD5110183/2722252024-02-28 05:03:20.782571oai:www.lume.ufrgs.br:10183/272225Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-02-28T08:03:20Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Electrostatic weak turbulence theory for warm magnetized plasmas
title Electrostatic weak turbulence theory for warm magnetized plasmas
spellingShingle Electrostatic weak turbulence theory for warm magnetized plasmas
Yoon, Peter H.
Plasmas
Ondas eletrostáticas
Teoria da turbulencia
title_short Electrostatic weak turbulence theory for warm magnetized plasmas
title_full Electrostatic weak turbulence theory for warm magnetized plasmas
title_fullStr Electrostatic weak turbulence theory for warm magnetized plasmas
title_full_unstemmed Electrostatic weak turbulence theory for warm magnetized plasmas
title_sort Electrostatic weak turbulence theory for warm magnetized plasmas
author Yoon, Peter H.
author_facet Yoon, Peter H.
Ziebell, Luiz Fernando
author_role author
author2 Ziebell, Luiz Fernando
author2_role author
dc.contributor.author.fl_str_mv Yoon, Peter H.
Ziebell, Luiz Fernando
dc.subject.por.fl_str_mv Plasmas
Ondas eletrostáticas
Teoria da turbulencia
topic Plasmas
Ondas eletrostáticas
Teoria da turbulencia
description Electrostatic weak turbulence theory for plasmas immersed in an ambient magnetic field is developed by employing a hybrid two-fluid and kinetic theories. The nonlinear susceptibility response function is calculated with the use of warm two-fluid equations. The linear dispersion relations for longitudinal electrostatic waves in magnetized plasmas are also obtained within the warm two-fluid theoretical scheme. However, dissipations that arise from linear and nonlinear wave–particle interactions cannot be discussed with the macroscopic two-fluid theory. To compute such collisionless dissipation effects, linearized kinetic theory is utilized. Moreover, a particle kinetic equation, which is necessary for a self-consistent description of the problem, is derived from the quasilinear kinetic theory. The final set of equations directly generalizes the electrostatic weak turbulence theory in unmagnetized plasmas, which could be applied for a variety of problems including the electron beam–plasma interactions in magnetized plasma environments.
publishDate 2021
dc.date.issued.fl_str_mv 2021
dc.date.accessioned.fl_str_mv 2024-02-27T04:58:08Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/272225
dc.identifier.issn.pt_BR.fl_str_mv 1070-664X
dc.identifier.nrb.pt_BR.fl_str_mv 001143059
identifier_str_mv 1070-664X
001143059
url http://hdl.handle.net/10183/272225
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physics of plasmas. Melville. Vol. 28, no. 12 (Dec. 2021), 122302, 14 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/272225/2/001143059.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/272225/1/001143059.pdf
bitstream.checksum.fl_str_mv d0f89880a3a46c3eddbcb6a487c0ec49
80ee59595b828867276504f6479ea29a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447853479231488