Electron holes in a κ distribution background with singularities
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/241034 |
Resumo: | The pseudo-potential method is applied to derive diverse propagating electron–hole structures in a nonthermal or κ particle distribution function background. The associated distribution function Ansatz reproduces the Schamel distribution of [H. Schamel, Phys. Plasmas 22, 042301 (2015)] in the Maxwellian (j ! 1) limit, providing a significant generalization of it for plasmas where superthermal electrons are ubiquitous, such as space plasmas. The pseudo-potential and the nonlinear dispersion relation are evaluated. The role of the spectral index κ on the nonlinear dispersion relation is investigated, in what concerns the wave amplitude, for instance. The energy-like first integral from Poisson’s equation is applied to analyze the properties of diverse classes of solutions: with the absence of trapped electrons, with a non analytic distribution of trapped electrons, or with a surplus of trapped electrons. Special attention is, therefore, paid to the non-orthodox case where the electrons distribution function exhibits strong singularities, being discontinuous or non-analytic. |
id |
UFRGS-2_db26ae6d371b41ceb48c12e74de405a9 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/241034 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Haas, Fernando2022-06-25T05:03:15Z20211070-664Xhttp://hdl.handle.net/10183/241034001143048The pseudo-potential method is applied to derive diverse propagating electron–hole structures in a nonthermal or κ particle distribution function background. The associated distribution function Ansatz reproduces the Schamel distribution of [H. Schamel, Phys. Plasmas 22, 042301 (2015)] in the Maxwellian (j ! 1) limit, providing a significant generalization of it for plasmas where superthermal electrons are ubiquitous, such as space plasmas. The pseudo-potential and the nonlinear dispersion relation are evaluated. The role of the spectral index κ on the nonlinear dispersion relation is investigated, in what concerns the wave amplitude, for instance. The energy-like first integral from Poisson’s equation is applied to analyze the properties of diverse classes of solutions: with the absence of trapped electrons, with a non analytic distribution of trapped electrons, or with a surplus of trapped electrons. Special attention is, therefore, paid to the non-orthodox case where the electrons distribution function exhibits strong singularities, being discontinuous or non-analytic.application/pdfengPhysics of plasmas. Melville. Vol. 28, no. 7 (July 2021), 072110, 8 p.PlasmasOndas de plasmaEquação de PoissonDinâmica não-linearElectron holes in a κ distribution background with singularitiesEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001143048.pdf.txt001143048.pdf.txtExtracted Texttext/plain32543http://www.lume.ufrgs.br/bitstream/10183/241034/2/001143048.pdf.txt7337b203fd12c7a09a0de6b761783691MD52ORIGINAL001143048.pdfTexto completo (inglês)application/pdf1300136http://www.lume.ufrgs.br/bitstream/10183/241034/1/001143048.pdf049eb6ac6f25b8d3046294933c075361MD5110183/2410342023-08-12 03:47:53.309104oai:www.lume.ufrgs.br:10183/241034Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-08-12T06:47:53Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Electron holes in a κ distribution background with singularities |
title |
Electron holes in a κ distribution background with singularities |
spellingShingle |
Electron holes in a κ distribution background with singularities Haas, Fernando Plasmas Ondas de plasma Equação de Poisson Dinâmica não-linear |
title_short |
Electron holes in a κ distribution background with singularities |
title_full |
Electron holes in a κ distribution background with singularities |
title_fullStr |
Electron holes in a κ distribution background with singularities |
title_full_unstemmed |
Electron holes in a κ distribution background with singularities |
title_sort |
Electron holes in a κ distribution background with singularities |
author |
Haas, Fernando |
author_facet |
Haas, Fernando |
author_role |
author |
dc.contributor.author.fl_str_mv |
Haas, Fernando |
dc.subject.por.fl_str_mv |
Plasmas Ondas de plasma Equação de Poisson Dinâmica não-linear |
topic |
Plasmas Ondas de plasma Equação de Poisson Dinâmica não-linear |
description |
The pseudo-potential method is applied to derive diverse propagating electron–hole structures in a nonthermal or κ particle distribution function background. The associated distribution function Ansatz reproduces the Schamel distribution of [H. Schamel, Phys. Plasmas 22, 042301 (2015)] in the Maxwellian (j ! 1) limit, providing a significant generalization of it for plasmas where superthermal electrons are ubiquitous, such as space plasmas. The pseudo-potential and the nonlinear dispersion relation are evaluated. The role of the spectral index κ on the nonlinear dispersion relation is investigated, in what concerns the wave amplitude, for instance. The energy-like first integral from Poisson’s equation is applied to analyze the properties of diverse classes of solutions: with the absence of trapped electrons, with a non analytic distribution of trapped electrons, or with a surplus of trapped electrons. Special attention is, therefore, paid to the non-orthodox case where the electrons distribution function exhibits strong singularities, being discontinuous or non-analytic. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021 |
dc.date.accessioned.fl_str_mv |
2022-06-25T05:03:15Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/241034 |
dc.identifier.issn.pt_BR.fl_str_mv |
1070-664X |
dc.identifier.nrb.pt_BR.fl_str_mv |
001143048 |
identifier_str_mv |
1070-664X 001143048 |
url |
http://hdl.handle.net/10183/241034 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Physics of plasmas. Melville. Vol. 28, no. 7 (July 2021), 072110, 8 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/241034/2/001143048.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/241034/1/001143048.pdf |
bitstream.checksum.fl_str_mv |
7337b203fd12c7a09a0de6b761783691 049eb6ac6f25b8d3046294933c075361 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447795797065728 |