Electron holes in a κ distribution background with singularities

Detalhes bibliográficos
Autor(a) principal: Haas, Fernando
Data de Publicação: 2021
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/241034
Resumo: The pseudo-potential method is applied to derive diverse propagating electron–hole structures in a nonthermal or κ particle distribution function background. The associated distribution function Ansatz reproduces the Schamel distribution of [H. Schamel, Phys. Plasmas 22, 042301 (2015)] in the Maxwellian (j ! 1) limit, providing a significant generalization of it for plasmas where superthermal electrons are ubiquitous, such as space plasmas. The pseudo-potential and the nonlinear dispersion relation are evaluated. The role of the spectral index κ on the nonlinear dispersion relation is investigated, in what concerns the wave amplitude, for instance. The energy-like first integral from Poisson’s equation is applied to analyze the properties of diverse classes of solutions: with the absence of trapped electrons, with a non analytic distribution of trapped electrons, or with a surplus of trapped electrons. Special attention is, therefore, paid to the non-orthodox case where the electrons distribution function exhibits strong singularities, being discontinuous or non-analytic.
id UFRGS-2_db26ae6d371b41ceb48c12e74de405a9
oai_identifier_str oai:www.lume.ufrgs.br:10183/241034
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Haas, Fernando2022-06-25T05:03:15Z20211070-664Xhttp://hdl.handle.net/10183/241034001143048The pseudo-potential method is applied to derive diverse propagating electron–hole structures in a nonthermal or κ particle distribution function background. The associated distribution function Ansatz reproduces the Schamel distribution of [H. Schamel, Phys. Plasmas 22, 042301 (2015)] in the Maxwellian (j ! 1) limit, providing a significant generalization of it for plasmas where superthermal electrons are ubiquitous, such as space plasmas. The pseudo-potential and the nonlinear dispersion relation are evaluated. The role of the spectral index κ on the nonlinear dispersion relation is investigated, in what concerns the wave amplitude, for instance. The energy-like first integral from Poisson’s equation is applied to analyze the properties of diverse classes of solutions: with the absence of trapped electrons, with a non analytic distribution of trapped electrons, or with a surplus of trapped electrons. Special attention is, therefore, paid to the non-orthodox case where the electrons distribution function exhibits strong singularities, being discontinuous or non-analytic.application/pdfengPhysics of plasmas. Melville. Vol. 28, no. 7 (July 2021), 072110, 8 p.PlasmasOndas de plasmaEquação de PoissonDinâmica não-linearElectron holes in a κ distribution background with singularitiesEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001143048.pdf.txt001143048.pdf.txtExtracted Texttext/plain32543http://www.lume.ufrgs.br/bitstream/10183/241034/2/001143048.pdf.txt7337b203fd12c7a09a0de6b761783691MD52ORIGINAL001143048.pdfTexto completo (inglês)application/pdf1300136http://www.lume.ufrgs.br/bitstream/10183/241034/1/001143048.pdf049eb6ac6f25b8d3046294933c075361MD5110183/2410342023-08-12 03:47:53.309104oai:www.lume.ufrgs.br:10183/241034Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-08-12T06:47:53Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Electron holes in a κ distribution background with singularities
title Electron holes in a κ distribution background with singularities
spellingShingle Electron holes in a κ distribution background with singularities
Haas, Fernando
Plasmas
Ondas de plasma
Equação de Poisson
Dinâmica não-linear
title_short Electron holes in a κ distribution background with singularities
title_full Electron holes in a κ distribution background with singularities
title_fullStr Electron holes in a κ distribution background with singularities
title_full_unstemmed Electron holes in a κ distribution background with singularities
title_sort Electron holes in a κ distribution background with singularities
author Haas, Fernando
author_facet Haas, Fernando
author_role author
dc.contributor.author.fl_str_mv Haas, Fernando
dc.subject.por.fl_str_mv Plasmas
Ondas de plasma
Equação de Poisson
Dinâmica não-linear
topic Plasmas
Ondas de plasma
Equação de Poisson
Dinâmica não-linear
description The pseudo-potential method is applied to derive diverse propagating electron–hole structures in a nonthermal or κ particle distribution function background. The associated distribution function Ansatz reproduces the Schamel distribution of [H. Schamel, Phys. Plasmas 22, 042301 (2015)] in the Maxwellian (j ! 1) limit, providing a significant generalization of it for plasmas where superthermal electrons are ubiquitous, such as space plasmas. The pseudo-potential and the nonlinear dispersion relation are evaluated. The role of the spectral index κ on the nonlinear dispersion relation is investigated, in what concerns the wave amplitude, for instance. The energy-like first integral from Poisson’s equation is applied to analyze the properties of diverse classes of solutions: with the absence of trapped electrons, with a non analytic distribution of trapped electrons, or with a surplus of trapped electrons. Special attention is, therefore, paid to the non-orthodox case where the electrons distribution function exhibits strong singularities, being discontinuous or non-analytic.
publishDate 2021
dc.date.issued.fl_str_mv 2021
dc.date.accessioned.fl_str_mv 2022-06-25T05:03:15Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/241034
dc.identifier.issn.pt_BR.fl_str_mv 1070-664X
dc.identifier.nrb.pt_BR.fl_str_mv 001143048
identifier_str_mv 1070-664X
001143048
url http://hdl.handle.net/10183/241034
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physics of plasmas. Melville. Vol. 28, no. 7 (July 2021), 072110, 8 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/241034/2/001143048.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/241034/1/001143048.pdf
bitstream.checksum.fl_str_mv 7337b203fd12c7a09a0de6b761783691
049eb6ac6f25b8d3046294933c075361
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447795797065728