Streamflow estimation in ungauged catchments in Brazil using machine learning approaches
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/259933 |
id |
UFRGS-2_dbecaa553b638748268634408d3c4971 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/259933 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Fontana, Rafael BarbedoSorribas, Mino VianaCollischonn, WalterEuropean Geoscience Union. General Assembly. (2023 : Vienna : On-line)2023-07-04T03:51:07Z2023http://hdl.handle.net/10183/259933001169183application/pdfengEuropean Geoscience Union. General Assembly (2023 : Vienna : On-line). [Programme]. [Göttingen : Copernicus, 2023]Escoamento : SimulacaoBacias hidrográficasDados escassosAprendizado de máquinaStreamflow estimation in ungauged catchments in Brazil using machine learning approachesEstrangeiroinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001169183.pdf.txt001169183.pdf.txtExtracted Texttext/plain3704http://www.lume.ufrgs.br/bitstream/10183/259933/2/001169183.pdf.txtc3889a435f8940a2f74d397e2baf5a28MD52ORIGINAL001169183.pdfResumoapplication/pdf297208http://www.lume.ufrgs.br/bitstream/10183/259933/1/001169183.pdffab39582ed4bdf26a80e8297188b0985MD5110183/2599332023-07-05 03:49:15.552802oai:www.lume.ufrgs.br:10183/259933Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2023-07-05T06:49:15Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Streamflow estimation in ungauged catchments in Brazil using machine learning approaches |
title |
Streamflow estimation in ungauged catchments in Brazil using machine learning approaches |
spellingShingle |
Streamflow estimation in ungauged catchments in Brazil using machine learning approaches Fontana, Rafael Barbedo Escoamento : Simulacao Bacias hidrográficas Dados escassos Aprendizado de máquina |
title_short |
Streamflow estimation in ungauged catchments in Brazil using machine learning approaches |
title_full |
Streamflow estimation in ungauged catchments in Brazil using machine learning approaches |
title_fullStr |
Streamflow estimation in ungauged catchments in Brazil using machine learning approaches |
title_full_unstemmed |
Streamflow estimation in ungauged catchments in Brazil using machine learning approaches |
title_sort |
Streamflow estimation in ungauged catchments in Brazil using machine learning approaches |
author |
Fontana, Rafael Barbedo |
author_facet |
Fontana, Rafael Barbedo Sorribas, Mino Viana Collischonn, Walter |
author_role |
author |
author2 |
Sorribas, Mino Viana Collischonn, Walter |
author2_role |
author author |
dc.contributor.event.pt_BR.fl_str_mv |
European Geoscience Union. General Assembly. (2023 : Vienna : On-line) |
dc.contributor.author.fl_str_mv |
Fontana, Rafael Barbedo Sorribas, Mino Viana Collischonn, Walter |
dc.subject.por.fl_str_mv |
Escoamento : Simulacao Bacias hidrográficas Dados escassos Aprendizado de máquina |
topic |
Escoamento : Simulacao Bacias hidrográficas Dados escassos Aprendizado de máquina |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-07-04T03:51:07Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/conferenceObject |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/259933 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001169183 |
url |
http://hdl.handle.net/10183/259933 |
identifier_str_mv |
001169183 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
European Geoscience Union. General Assembly (2023 : Vienna : On-line). [Programme]. [Göttingen : Copernicus, 2023] |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/259933/2/001169183.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/259933/1/001169183.pdf |
bitstream.checksum.fl_str_mv |
c3889a435f8940a2f74d397e2baf5a28 fab39582ed4bdf26a80e8297188b0985 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447830834184192 |