Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons

Detalhes bibliográficos
Autor(a) principal: Erichsen Junior, Rubem
Data de Publicação: 2006
Outros Autores: Mainieri, Miguel Schumacher, Brunnet, Leonardo Gregory
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/101626
Resumo: The Hindmarsh-Rose HR system of equations is a model that captures the essential of the spiking activity of biological neurons. In this work we present an exploratory numerical study of the time activities of two HR neurons interacting through electrical synapses. The knowledge of this simple system is a first step towards the understanding of the cooperative behavior of large neural assemblies. Several periodic and chaotic attractors where identified, as the coupling strength is increased from zero until the perfect synchronization regime. In addition to the known phase locking synchronization at weak coupling, electrical synapses also allow for both in-phase and antiphase synchronization from moderate to strong coupling. A regime where the system changes apparently randomly between in-phase and antiphase locking evolves to a bistability regime, where both in-phase and antiphase periodic attractors are locally stable. At the strong coupling regime in-phase chaotic evolution dominates, but windows with complex periodic behavior are also present.
id UFRGS-2_dc8103e44db17e670e781911b832006f
oai_identifier_str oai:www.lume.ufrgs.br:10183/101626
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Erichsen Junior, RubemMainieri, Miguel SchumacherBrunnet, Leonardo Gregory2014-08-22T02:11:10Z20061539-3755http://hdl.handle.net/10183/101626000595750The Hindmarsh-Rose HR system of equations is a model that captures the essential of the spiking activity of biological neurons. In this work we present an exploratory numerical study of the time activities of two HR neurons interacting through electrical synapses. The knowledge of this simple system is a first step towards the understanding of the cooperative behavior of large neural assemblies. Several periodic and chaotic attractors where identified, as the coupling strength is increased from zero until the perfect synchronization regime. In addition to the known phase locking synchronization at weak coupling, electrical synapses also allow for both in-phase and antiphase synchronization from moderate to strong coupling. A regime where the system changes apparently randomly between in-phase and antiphase locking evolves to a bistability regime, where both in-phase and antiphase periodic attractors are locally stable. At the strong coupling regime in-phase chaotic evolution dominates, but windows with complex periodic behavior are also present.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 74, no. 6 (Oct. 2006), 061906, 3 p.FísicaPeriodicity and chaos in electrically coupled Hindmarsh-Rose neuronsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000595750.pdf000595750.pdfTexto completo (inglês)application/pdf390891http://www.lume.ufrgs.br/bitstream/10183/101626/1/000595750.pdf0c9a4b2a1229a9d3a043d20f1afe4447MD51TEXT000595750.pdf.txt000595750.pdf.txtExtracted Texttext/plain13814http://www.lume.ufrgs.br/bitstream/10183/101626/2/000595750.pdf.txt10003b0d6ff947d96f9a771a0c75884eMD52THUMBNAIL000595750.pdf.jpg000595750.pdf.jpgGenerated Thumbnailimage/jpeg2033http://www.lume.ufrgs.br/bitstream/10183/101626/3/000595750.pdf.jpg1afe2026e859436917e7f9d8e99c77c9MD5310183/1016262024-05-19 05:46:19.852041oai:www.lume.ufrgs.br:10183/101626Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-05-19T08:46:19Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons
title Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons
spellingShingle Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons
Erichsen Junior, Rubem
Física
title_short Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons
title_full Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons
title_fullStr Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons
title_full_unstemmed Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons
title_sort Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons
author Erichsen Junior, Rubem
author_facet Erichsen Junior, Rubem
Mainieri, Miguel Schumacher
Brunnet, Leonardo Gregory
author_role author
author2 Mainieri, Miguel Schumacher
Brunnet, Leonardo Gregory
author2_role author
author
dc.contributor.author.fl_str_mv Erichsen Junior, Rubem
Mainieri, Miguel Schumacher
Brunnet, Leonardo Gregory
dc.subject.por.fl_str_mv Física
topic Física
description The Hindmarsh-Rose HR system of equations is a model that captures the essential of the spiking activity of biological neurons. In this work we present an exploratory numerical study of the time activities of two HR neurons interacting through electrical synapses. The knowledge of this simple system is a first step towards the understanding of the cooperative behavior of large neural assemblies. Several periodic and chaotic attractors where identified, as the coupling strength is increased from zero until the perfect synchronization regime. In addition to the known phase locking synchronization at weak coupling, electrical synapses also allow for both in-phase and antiphase synchronization from moderate to strong coupling. A regime where the system changes apparently randomly between in-phase and antiphase locking evolves to a bistability regime, where both in-phase and antiphase periodic attractors are locally stable. At the strong coupling regime in-phase chaotic evolution dominates, but windows with complex periodic behavior are also present.
publishDate 2006
dc.date.issued.fl_str_mv 2006
dc.date.accessioned.fl_str_mv 2014-08-22T02:11:10Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/101626
dc.identifier.issn.pt_BR.fl_str_mv 1539-3755
dc.identifier.nrb.pt_BR.fl_str_mv 000595750
identifier_str_mv 1539-3755
000595750
url http://hdl.handle.net/10183/101626
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 74, no. 6 (Oct. 2006), 061906, 3 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/101626/1/000595750.pdf
http://www.lume.ufrgs.br/bitstream/10183/101626/2/000595750.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/101626/3/000595750.pdf.jpg
bitstream.checksum.fl_str_mv 0c9a4b2a1229a9d3a043d20f1afe4447
10003b0d6ff947d96f9a771a0c75884e
1afe2026e859436917e7f9d8e99c77c9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447555599761408