Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/101626 |
Resumo: | The Hindmarsh-Rose HR system of equations is a model that captures the essential of the spiking activity of biological neurons. In this work we present an exploratory numerical study of the time activities of two HR neurons interacting through electrical synapses. The knowledge of this simple system is a first step towards the understanding of the cooperative behavior of large neural assemblies. Several periodic and chaotic attractors where identified, as the coupling strength is increased from zero until the perfect synchronization regime. In addition to the known phase locking synchronization at weak coupling, electrical synapses also allow for both in-phase and antiphase synchronization from moderate to strong coupling. A regime where the system changes apparently randomly between in-phase and antiphase locking evolves to a bistability regime, where both in-phase and antiphase periodic attractors are locally stable. At the strong coupling regime in-phase chaotic evolution dominates, but windows with complex periodic behavior are also present. |
id |
UFRGS-2_dc8103e44db17e670e781911b832006f |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/101626 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Erichsen Junior, RubemMainieri, Miguel SchumacherBrunnet, Leonardo Gregory2014-08-22T02:11:10Z20061539-3755http://hdl.handle.net/10183/101626000595750The Hindmarsh-Rose HR system of equations is a model that captures the essential of the spiking activity of biological neurons. In this work we present an exploratory numerical study of the time activities of two HR neurons interacting through electrical synapses. The knowledge of this simple system is a first step towards the understanding of the cooperative behavior of large neural assemblies. Several periodic and chaotic attractors where identified, as the coupling strength is increased from zero until the perfect synchronization regime. In addition to the known phase locking synchronization at weak coupling, electrical synapses also allow for both in-phase and antiphase synchronization from moderate to strong coupling. A regime where the system changes apparently randomly between in-phase and antiphase locking evolves to a bistability regime, where both in-phase and antiphase periodic attractors are locally stable. At the strong coupling regime in-phase chaotic evolution dominates, but windows with complex periodic behavior are also present.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 74, no. 6 (Oct. 2006), 061906, 3 p.FísicaPeriodicity and chaos in electrically coupled Hindmarsh-Rose neuronsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000595750.pdf000595750.pdfTexto completo (inglês)application/pdf390891http://www.lume.ufrgs.br/bitstream/10183/101626/1/000595750.pdf0c9a4b2a1229a9d3a043d20f1afe4447MD51TEXT000595750.pdf.txt000595750.pdf.txtExtracted Texttext/plain13814http://www.lume.ufrgs.br/bitstream/10183/101626/2/000595750.pdf.txt10003b0d6ff947d96f9a771a0c75884eMD52THUMBNAIL000595750.pdf.jpg000595750.pdf.jpgGenerated Thumbnailimage/jpeg2033http://www.lume.ufrgs.br/bitstream/10183/101626/3/000595750.pdf.jpg1afe2026e859436917e7f9d8e99c77c9MD5310183/1016262024-05-19 05:46:19.852041oai:www.lume.ufrgs.br:10183/101626Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-05-19T08:46:19Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons |
title |
Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons |
spellingShingle |
Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons Erichsen Junior, Rubem Física |
title_short |
Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons |
title_full |
Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons |
title_fullStr |
Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons |
title_full_unstemmed |
Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons |
title_sort |
Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons |
author |
Erichsen Junior, Rubem |
author_facet |
Erichsen Junior, Rubem Mainieri, Miguel Schumacher Brunnet, Leonardo Gregory |
author_role |
author |
author2 |
Mainieri, Miguel Schumacher Brunnet, Leonardo Gregory |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Erichsen Junior, Rubem Mainieri, Miguel Schumacher Brunnet, Leonardo Gregory |
dc.subject.por.fl_str_mv |
Física |
topic |
Física |
description |
The Hindmarsh-Rose HR system of equations is a model that captures the essential of the spiking activity of biological neurons. In this work we present an exploratory numerical study of the time activities of two HR neurons interacting through electrical synapses. The knowledge of this simple system is a first step towards the understanding of the cooperative behavior of large neural assemblies. Several periodic and chaotic attractors where identified, as the coupling strength is increased from zero until the perfect synchronization regime. In addition to the known phase locking synchronization at weak coupling, electrical synapses also allow for both in-phase and antiphase synchronization from moderate to strong coupling. A regime where the system changes apparently randomly between in-phase and antiphase locking evolves to a bistability regime, where both in-phase and antiphase periodic attractors are locally stable. At the strong coupling regime in-phase chaotic evolution dominates, but windows with complex periodic behavior are also present. |
publishDate |
2006 |
dc.date.issued.fl_str_mv |
2006 |
dc.date.accessioned.fl_str_mv |
2014-08-22T02:11:10Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/101626 |
dc.identifier.issn.pt_BR.fl_str_mv |
1539-3755 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000595750 |
identifier_str_mv |
1539-3755 000595750 |
url |
http://hdl.handle.net/10183/101626 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 74, no. 6 (Oct. 2006), 061906, 3 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/101626/1/000595750.pdf http://www.lume.ufrgs.br/bitstream/10183/101626/2/000595750.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/101626/3/000595750.pdf.jpg |
bitstream.checksum.fl_str_mv |
0c9a4b2a1229a9d3a043d20f1afe4447 10003b0d6ff947d96f9a771a0c75884e 1afe2026e859436917e7f9d8e99c77c9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447555599761408 |